SlideShare uma empresa Scribd logo
1 de 31
Sean Carroll, Caltech
Quantum Field Theory
and the
Limits of Knowledge
Two claims:
1. The laws of physics underlying everyday life
are completely known.
2. The structure of quantum field theory provides
a warrant for claim 1.
“Laws of physics underlying everyday life”
= The Core Theory
• Quantum field theory in a
4-dimensional spacetime.
• Matter (fermions): quarks,leptons.
• Strong, weak, electromagnetic forces.
• Gravitation = general relativity.
• Higgs field.
Long history of embarrassingly premature triumphalism.
“[We are] probably nearing the limit of all we can know
about astronomy.” – Simon Newcomb, 1888
“The more important fundamental laws and facts of
physical science have all been discovered.”
– Albert Michelson, 1894
“Physics as we know it will be over in six months.”
– Max Born, 1928
There is a 50% chance that “we would find a complete
unified theory of everything by the end of the century.”
– Stephen Hawking, 1980
Perfectly obvious but necessary caveats
We’re nowhere close to understanding the fundamental
theory of everything.
We don’t understand the non-everyday: dark matter,
quantum gravity, the Big Bang…
We don’t fully understand macroscopic aggregations:
condensed matter, chemistry, biology, economics…
Quantum mechanics or quantum field theory could
always be wrong.
Known particles/forces,
general relativity
(Core theory)
Dark matter/energy,
new particles/forces,
hidden sectors
Underlying reality
(theory of everything)
Higher-level
macro-phenomena
of everyday life
Astrophysics,
cosmology
The Core Theory in more detail:
Quantum Mechanics
Think of “configurations,”
e.g. the location x of a particle.
Assign a complex number to
every possible configuration.
That describes a quantum state: a “wave function” Ψ(x)
that lives in a very-high-dimensional Hilbert space.
Schrödinger evolution equation:
x
x
Ψ(x)
Measurements in Quantum Mechanics
But we don’t “see” the wave function.
Measurements return some specific value of the
configuration (or other observable).
Probability of measurement outcome = |wave function|2
.
After measurement, wave function “collapses” (becomes
suddenly concentrated on observed outcome).
Seems absurd. But – good enough to successfully
predict the outcome of every experiment ever done.
(Some) Observables are Quantized
Standard example: Simple Harmonic Oscillator.
Particle moving in a potential ,
where x is the position and ω is the frequency.
Energy is quantized
into discrete levels:
Quantum Field Theory
QFT is not a successor/alternative to QM; it’s just
a particular QM model, with a particular Hamiltonian.
Namely: “configurations” are “values of (relativistic)
fields throughout space.” E.g. φ(x).
The quantum state (wave function) is a complex
amplitude for each possible field configuration, Ψ[φ(x)].
Examples: electromagnetic field, electron field,
top quark field, gravitational field (metric), etc.
Particles from fields
Each mode acts like a simple harmonic oscillator!
Energy levels = number of particles.
Wavelength = 1/momentum.
Indeed, relativity+QM+particles QFT.
Decompose oscillating field into a sum of “modes”
of different wavelengths (Fourier transform):
= +
+ …+
Interactions
Particle interactions are encoded in Feynman diagrams.
= +
+ + …
Adding up virtual particles
Every particle has a
momentum, and total
is conserved at
each vertex.
When there are loops,
momentum “flowing
through the loop” (q)
is arbitrary, and gets
summed over.
Result is often infinite.
don’t need to worry
about what happens here
Ken Wilson: organize QFT by energy/length scale
Remember: energy & momentum ~ 1/(wavelength).
IR
UV
Λ
(“cutoff”
energy
scale)
long
wavelengths/
low energies
short
wavelengths/
high energies
Think of your theory as only describing energies below
the ultraviolet cutoff scale Λ.
I.e., only include wavelengths longer than 1/Λ.
Result is an effective field theory below Λ.
Effective Field Theory
All diagrams with N legs contribute to an interaction
term (in Lagrangian) between N particles.
There are an infinite number of terms in
EFT equations of motion…
φ4
φ8
φ6
Both the field φ and the cutoff Λ have units of energy,
and the Lagrangian governing interactions is (energy)4
.
So schematically we have:
Higher-order terms are negligible at low energy (<< Λ).
Only a finite number of relevant/marginal interactions.
… but only a finite number of terms matter
“relevant” “marginal” “irrelevant”
At energies below Λ, an EFT can be a complete theory.
Above Λ, new phenomena can kick in.
E.g. Fermi theory of weak interactions Standard Model.
Effective field theories tell us their regime of applicability:
below the ultraviolet cutoff Λ.
Fermi coupling
“We haven’t quantized gravity,” but I’m treating
gravity like a perfectly ordinary effective field theory.
Because it is – as long as gravity is weak (far from
black holes, Big Bang, etc.).
In terms of curvature parameter R, interactions look like
Here on Earth, 1st
term is 1050
times bigger than 2nd
.
Quantum Gravity?
A given effective field theory with cutoff Λ could have
many “ultraviolet completions” at higher energies.
That’s why it’s hard to do experiments relevant to
quantum gravity: we expect Λ ~ Eplanck ~ 1015
ELHC.
Multiple realizability
loop quantum gravity string theory dynamical triangulations
Known particles/forces,
general relativity
(Core theory)
Dark matter/energy,
new particles/forces,
hidden sectors
Underlying reality
(theory of everything)
Higher-level
emergent phenomena
of everyday life
Astrophysics,
cosmology
Underlying physics only influences us via Core Theory.
What about new particles/forces?
strongly
interacting
light/
long range/
low energy
heavy/
short range/
high energy
weakly
interacting
accessible
inaccessible
known
knowns
known
unknowns
Unknown unknowns = violations of QFT itself.
QFT puts very tight
constraints on new phenomena.
time
new particle
new
interaction
If a new particle can
interact with ordinary
particles:
Then that particle
can be created in
high-energy collisions.
“Crossing symmetry.”
Constraints on new particles
As-yet-undiscovered
particles must be either:
1. very weakly interacting,
2. too heavy to create, or
3. too short-lived to detect.
In any of those cases, the new particle would
be irrelevant to our everyday lives.
To be relevant to everyday physics, any new forces
must interact with protons, neutrons, electrons,
and/or photons.
Experiments are ongoing (torsion balances) to
search for new, weak, long-range forces.
Two ways to hide:
1. weak interactions, or
2. very short ranges.
Constraints on new forces
Strength(relativetogravity)
Range [Long et al. 2003; Antoniadis 2003]
Experimental limits on new forces
Ruled Out
Allowed
new
gravitational-
strength
force
(10-36
E&M)
Known particles/forces,
general relativity
(Core theory)
Dark matter/energy,
new particles/forces,
hidden sectors
Underlying reality
(theory of everything)
Higher-level
emergent phenomena
of everyday life
Astrophysics,
cosmology
New particles/forces are too heavy/weak to influence us.
gravity
other forces matter Higgs
quantum mechanics spacetime
Punchline:
the laws of physics underlying everyday experience.
Other phenomena are too massive or weakly-coupled to
have any impact on the particles of which we are made.
• Astrology is not correct.
Implications of the Core Theory
• You can’t bend spoons with your mind.
• The soul does not survive the body.
3. Accessible deviations from textbook QM.
(Hidden variables, spontaneous/induced collapse.)
Loopholes?
2. Breakdown of QFT itself. E.g. non-local constraints/
interactions from quantum gravity (holography).
1. New forces with environment-dependent couplings.
4. Divine intervention.
Known particles/forces,
general relativity
(Core theory)
Dark matter/energy,
new particles/forces,
hidden sectors
Underlying reality
(theory of everything)
Higher-level
emergent phenomena
of everyday life
Astrophysics,
cosmology

Mais conteúdo relacionado

Mais procurados

General relativity presentation.ragesh,asmitha,m.d.t
General relativity presentation.ragesh,asmitha,m.d.tGeneral relativity presentation.ragesh,asmitha,m.d.t
General relativity presentation.ragesh,asmitha,m.d.trageshthedon
 
Gravitational wave astronomy
Gravitational wave astronomyGravitational wave astronomy
Gravitational wave astronomyKaushik Ghosh
 
Quantum entanglement (1).pptx
Quantum entanglement (1).pptxQuantum entanglement (1).pptx
Quantum entanglement (1).pptxSandraJoseph49
 
Special Theory Of Relativity
Special Theory Of RelativitySpecial Theory Of Relativity
Special Theory Of RelativityNikhil Sharma
 
LIGO - General Information
LIGO - General InformationLIGO - General Information
LIGO - General InformationIan Rothbarth
 
Special Theory Of Relativity
Special Theory Of RelativitySpecial Theory Of Relativity
Special Theory Of RelativityGreenwich Council
 
Dark matter ~ Introduction
Dark matter ~ Introduction Dark matter ~ Introduction
Dark matter ~ Introduction Taliya Hemanth
 
Dark Matter And Dark Energy
Dark Matter And Dark EnergyDark Matter And Dark Energy
Dark Matter And Dark EnergyGoogle
 
Introduction to the General Theory of Relativity
Introduction to the General Theory of RelativityIntroduction to the General Theory of Relativity
Introduction to the General Theory of RelativityArpan Saha
 
Dark Matter and Dark Energy
Dark Matter and Dark EnergyDark Matter and Dark Energy
Dark Matter and Dark EnergyBryan Higgs
 
Angular Momentum & Parity in Alpha decay
Angular Momentum & Parity in Alpha decayAngular Momentum & Parity in Alpha decay
Angular Momentum & Parity in Alpha decaysurat murthy
 
Setting Time Aright
Setting Time ArightSetting Time Aright
Setting Time ArightSean Carroll
 
RELATIVITY THEORY
RELATIVITY THEORYRELATIVITY THEORY
RELATIVITY THEORYoguadano99
 
Einstein's theory of general relativity
Einstein's theory of general relativityEinstein's theory of general relativity
Einstein's theory of general relativitySmithDaisy
 

Mais procurados (20)

General relativity presentation.ragesh,asmitha,m.d.t
General relativity presentation.ragesh,asmitha,m.d.tGeneral relativity presentation.ragesh,asmitha,m.d.t
General relativity presentation.ragesh,asmitha,m.d.t
 
Gravitational wave astronomy
Gravitational wave astronomyGravitational wave astronomy
Gravitational wave astronomy
 
Quantum entanglement (1).pptx
Quantum entanglement (1).pptxQuantum entanglement (1).pptx
Quantum entanglement (1).pptx
 
BASICS OF COSMOLOGY
BASICS OF COSMOLOGYBASICS OF COSMOLOGY
BASICS OF COSMOLOGY
 
Special Theory Of Relativity
Special Theory Of RelativitySpecial Theory Of Relativity
Special Theory Of Relativity
 
StarkEffect.ppt
StarkEffect.pptStarkEffect.ppt
StarkEffect.ppt
 
LIGO - General Information
LIGO - General InformationLIGO - General Information
LIGO - General Information
 
Special Theory Of Relativity
Special Theory Of RelativitySpecial Theory Of Relativity
Special Theory Of Relativity
 
Dark matter ~ Introduction
Dark matter ~ Introduction Dark matter ~ Introduction
Dark matter ~ Introduction
 
Relativity theory
Relativity theoryRelativity theory
Relativity theory
 
Dark Matter And Dark Energy
Dark Matter And Dark EnergyDark Matter And Dark Energy
Dark Matter And Dark Energy
 
Introduction to the General Theory of Relativity
Introduction to the General Theory of RelativityIntroduction to the General Theory of Relativity
Introduction to the General Theory of Relativity
 
Theory of relativity
Theory of relativityTheory of relativity
Theory of relativity
 
Higgs Boson
Higgs BosonHiggs Boson
Higgs Boson
 
Dark Matter and Dark Energy
Dark Matter and Dark EnergyDark Matter and Dark Energy
Dark Matter and Dark Energy
 
Angular Momentum & Parity in Alpha decay
Angular Momentum & Parity in Alpha decayAngular Momentum & Parity in Alpha decay
Angular Momentum & Parity in Alpha decay
 
Setting Time Aright
Setting Time ArightSetting Time Aright
Setting Time Aright
 
RELATIVITY THEORY
RELATIVITY THEORYRELATIVITY THEORY
RELATIVITY THEORY
 
Einstein's theory of general relativity
Einstein's theory of general relativityEinstein's theory of general relativity
Einstein's theory of general relativity
 
The Big Bang Theory
The Big Bang TheoryThe Big Bang Theory
The Big Bang Theory
 

Destaque

Gifford Lecture One: Cosmos, Time, Memory
Gifford Lecture One: Cosmos, Time, MemoryGifford Lecture One: Cosmos, Time, Memory
Gifford Lecture One: Cosmos, Time, MemorySean Carroll
 
The Many Worlds of Quantum Mechanics
The Many Worlds of Quantum MechanicsThe Many Worlds of Quantum Mechanics
The Many Worlds of Quantum MechanicsSean Carroll
 
Purpose and the Universe
Purpose and the UniversePurpose and the Universe
Purpose and the UniverseSean Carroll
 
The Origin of the Universe and the Arrow of Time
The Origin of the Universe and the Arrow of TimeThe Origin of the Universe and the Arrow of Time
The Origin of the Universe and the Arrow of TimeSean Carroll
 
Periodontal probing and techniques
Periodontal probing and techniquesPeriodontal probing and techniques
Periodontal probing and techniquesDr John Kazim
 
Nonprofit Content Marketing - 2015 Benchmarks, Budgets and Trends - North Ame...
Nonprofit Content Marketing - 2015 Benchmarks, Budgets and Trends - North Ame...Nonprofit Content Marketing - 2015 Benchmarks, Budgets and Trends - North Ame...
Nonprofit Content Marketing - 2015 Benchmarks, Budgets and Trends - North Ame...Content Marketing Institute
 
Refraction
RefractionRefraction
Refractionmeikocat
 
4. heredity and evolution
4. heredity and evolution4. heredity and evolution
4. heredity and evolutionAbhay Goyal
 
Gear Cutting Presentation for Polytechnic College Students of India
Gear Cutting Presentation for Polytechnic College Students of IndiaGear Cutting Presentation for Polytechnic College Students of India
Gear Cutting Presentation for Polytechnic College Students of Indiakichu
 
Thai tech startup ecosystem report 2017
Thai tech startup ecosystem report 2017Thai tech startup ecosystem report 2017
Thai tech startup ecosystem report 2017Techsauce Media
 
Types of maintenance
Types of maintenanceTypes of maintenance
Types of maintenanceAbhik Rathod
 
Fmcg training modules-bfg
Fmcg training modules-bfgFmcg training modules-bfg
Fmcg training modules-bfgRomy Cagampan
 
Classroom Management Techniques
Classroom Management TechniquesClassroom Management Techniques
Classroom Management TechniquesBaita Sapad
 

Destaque (20)

Gifford Lecture One: Cosmos, Time, Memory
Gifford Lecture One: Cosmos, Time, MemoryGifford Lecture One: Cosmos, Time, Memory
Gifford Lecture One: Cosmos, Time, Memory
 
The Many Worlds of Quantum Mechanics
The Many Worlds of Quantum MechanicsThe Many Worlds of Quantum Mechanics
The Many Worlds of Quantum Mechanics
 
Purpose and the Universe
Purpose and the UniversePurpose and the Universe
Purpose and the Universe
 
The Origin of the Universe and the Arrow of Time
The Origin of the Universe and the Arrow of TimeThe Origin of the Universe and the Arrow of Time
The Origin of the Universe and the Arrow of Time
 
Periodontal probing and techniques
Periodontal probing and techniquesPeriodontal probing and techniques
Periodontal probing and techniques
 
Nonprofit Content Marketing - 2015 Benchmarks, Budgets and Trends - North Ame...
Nonprofit Content Marketing - 2015 Benchmarks, Budgets and Trends - North Ame...Nonprofit Content Marketing - 2015 Benchmarks, Budgets and Trends - North Ame...
Nonprofit Content Marketing - 2015 Benchmarks, Budgets and Trends - North Ame...
 
Refraction
RefractionRefraction
Refraction
 
MVNO Case
MVNO CaseMVNO Case
MVNO Case
 
4. heredity and evolution
4. heredity and evolution4. heredity and evolution
4. heredity and evolution
 
Against Space
Against SpaceAgainst Space
Against Space
 
Gear Cutting Presentation for Polytechnic College Students of India
Gear Cutting Presentation for Polytechnic College Students of IndiaGear Cutting Presentation for Polytechnic College Students of India
Gear Cutting Presentation for Polytechnic College Students of India
 
Thai tech startup ecosystem report 2017
Thai tech startup ecosystem report 2017Thai tech startup ecosystem report 2017
Thai tech startup ecosystem report 2017
 
Mri brain anatomy Dr Muhammad Bin Zulfiqar
Mri brain anatomy Dr Muhammad Bin ZulfiqarMri brain anatomy Dr Muhammad Bin Zulfiqar
Mri brain anatomy Dr Muhammad Bin Zulfiqar
 
Types of maintenance
Types of maintenanceTypes of maintenance
Types of maintenance
 
Real Estate Listing Presentation
Real Estate Listing PresentationReal Estate Listing Presentation
Real Estate Listing Presentation
 
Fmcg training modules-bfg
Fmcg training modules-bfgFmcg training modules-bfg
Fmcg training modules-bfg
 
Understanding DPDK
Understanding DPDKUnderstanding DPDK
Understanding DPDK
 
5000 Sat Words With Definitions
5000 Sat Words With Definitions5000 Sat Words With Definitions
5000 Sat Words With Definitions
 
Classroom Management Techniques
Classroom Management TechniquesClassroom Management Techniques
Classroom Management Techniques
 
Cardiac cycle ppt (2)
Cardiac cycle ppt (2)Cardiac cycle ppt (2)
Cardiac cycle ppt (2)
 

Semelhante a Quantum Field Theory and the Limits of Knowledge

Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationGaurav Singh Gusain
 
natsci1report (2007version)
natsci1report (2007version)natsci1report (2007version)
natsci1report (2007version)alezandria
 
Vasil Penchev. Gravity as entanglement, and entanglement as gravity
Vasil Penchev. Gravity as entanglement, and entanglement as gravityVasil Penchev. Gravity as entanglement, and entanglement as gravity
Vasil Penchev. Gravity as entanglement, and entanglement as gravityVasil Penchev
 
The Standard Model and the LHC in the Higgs Boson Era
The Standard Model and the LHC in the Higgs Boson EraThe Standard Model and the LHC in the Higgs Boson Era
The Standard Model and the LHC in the Higgs Boson Erajuanrojochacon
 
19_quantum [Autosaved].ppt
19_quantum [Autosaved].ppt19_quantum [Autosaved].ppt
19_quantum [Autosaved].pptVEERSHARMA35
 
Nanotechnology with Uncertanty principle
Nanotechnology with Uncertanty principle  Nanotechnology with Uncertanty principle
Nanotechnology with Uncertanty principle Samar Makarona
 
Ion trap quantum computation
Ion trap quantum computationIon trap quantum computation
Ion trap quantum computationGabriel O'Brien
 
Quantum Chemistry-Introduction - Unit-V.pdf
Quantum Chemistry-Introduction - Unit-V.pdfQuantum Chemistry-Introduction - Unit-V.pdf
Quantum Chemistry-Introduction - Unit-V.pdfKavitha251961
 
Quantum_Mechanics
Quantum_MechanicsQuantum_Mechanics
Quantum_MechanicsTejasvTomar
 
Heisgnberg principle, energy levels &amp; atomic spectra
Heisgnberg principle, energy levels &amp; atomic spectraHeisgnberg principle, energy levels &amp; atomic spectra
Heisgnberg principle, energy levels &amp; atomic spectraNoor Fatima
 
News from Quantum Gravity Phenomenology
News from Quantum Gravity PhenomenologyNews from Quantum Gravity Phenomenology
News from Quantum Gravity PhenomenologySabine Hossenfelder
 
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...IOSR Journals
 
BasicsofQM_Postulates.ppt
BasicsofQM_Postulates.pptBasicsofQM_Postulates.ppt
BasicsofQM_Postulates.pptSidPall
 
Basics of Quantum Mechanics: - Why Quantum Physics? -
Basics of Quantum Mechanics: - Why Quantum Physics? -Basics of Quantum Mechanics: - Why Quantum Physics? -
Basics of Quantum Mechanics: - Why Quantum Physics? -ShivangiVerma59
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanicshplap
 
natsci1report (compatibility mode)
natsci1report (compatibility mode)natsci1report (compatibility mode)
natsci1report (compatibility mode)alezandria
 
#SciChallenge2017 Elementary particles
#SciChallenge2017 Elementary particles #SciChallenge2017 Elementary particles
#SciChallenge2017 Elementary particles Barış Bayraktar
 

Semelhante a Quantum Field Theory and the Limits of Knowledge (20)

Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equation
 
natsci1report (2007version)
natsci1report (2007version)natsci1report (2007version)
natsci1report (2007version)
 
Vasil Penchev. Gravity as entanglement, and entanglement as gravity
Vasil Penchev. Gravity as entanglement, and entanglement as gravityVasil Penchev. Gravity as entanglement, and entanglement as gravity
Vasil Penchev. Gravity as entanglement, and entanglement as gravity
 
604 2441-1-pb
604 2441-1-pb604 2441-1-pb
604 2441-1-pb
 
The Standard Model and the LHC in the Higgs Boson Era
The Standard Model and the LHC in the Higgs Boson EraThe Standard Model and the LHC in the Higgs Boson Era
The Standard Model and the LHC in the Higgs Boson Era
 
19_quantum [Autosaved].ppt
19_quantum [Autosaved].ppt19_quantum [Autosaved].ppt
19_quantum [Autosaved].ppt
 
Nanotechnology with Uncertanty principle
Nanotechnology with Uncertanty principle  Nanotechnology with Uncertanty principle
Nanotechnology with Uncertanty principle
 
Ion trap quantum computation
Ion trap quantum computationIon trap quantum computation
Ion trap quantum computation
 
Quantum Chemistry-Introduction - Unit-V.pdf
Quantum Chemistry-Introduction - Unit-V.pdfQuantum Chemistry-Introduction - Unit-V.pdf
Quantum Chemistry-Introduction - Unit-V.pdf
 
SFT_preprint-EN_2_col.pdf
SFT_preprint-EN_2_col.pdfSFT_preprint-EN_2_col.pdf
SFT_preprint-EN_2_col.pdf
 
Quantum_Mechanics
Quantum_MechanicsQuantum_Mechanics
Quantum_Mechanics
 
Quantum physics
Quantum physicsQuantum physics
Quantum physics
 
Heisgnberg principle, energy levels &amp; atomic spectra
Heisgnberg principle, energy levels &amp; atomic spectraHeisgnberg principle, energy levels &amp; atomic spectra
Heisgnberg principle, energy levels &amp; atomic spectra
 
News from Quantum Gravity Phenomenology
News from Quantum Gravity PhenomenologyNews from Quantum Gravity Phenomenology
News from Quantum Gravity Phenomenology
 
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
 
BasicsofQM_Postulates.ppt
BasicsofQM_Postulates.pptBasicsofQM_Postulates.ppt
BasicsofQM_Postulates.ppt
 
Basics of Quantum Mechanics: - Why Quantum Physics? -
Basics of Quantum Mechanics: - Why Quantum Physics? -Basics of Quantum Mechanics: - Why Quantum Physics? -
Basics of Quantum Mechanics: - Why Quantum Physics? -
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
natsci1report (compatibility mode)
natsci1report (compatibility mode)natsci1report (compatibility mode)
natsci1report (compatibility mode)
 
#SciChallenge2017 Elementary particles
#SciChallenge2017 Elementary particles #SciChallenge2017 Elementary particles
#SciChallenge2017 Elementary particles
 

Último

Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxkumarsanjai28051
 
Introduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxIntroduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxMedical College
 
Immunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptImmunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptAmirRaziq1
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxzeus70441
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Christina Parmionova
 
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书zdzoqco
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosZachary Labe
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and AnnovaMansi Rastogi
 
projectile motion, impulse and moment
projectile  motion, impulse  and  momentprojectile  motion, impulse  and  moment
projectile motion, impulse and momentdonamiaquintan2
 
The Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionThe Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionJadeNovelo1
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsDobusch Leonhard
 
Quarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsQuarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsCharlene Llagas
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxpriyankatabhane
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfGABYFIORELAMALPARTID1
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlshansessene
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPirithiRaju
 
whole genome sequencing new and its types including shortgun and clone by clone
whole genome sequencing new  and its types including shortgun and clone by clonewhole genome sequencing new  and its types including shortgun and clone by clone
whole genome sequencing new and its types including shortgun and clone by clonechaudhary charan shingh university
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learningvschiavoni
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGiovaniTrinidad
 

Último (20)

Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptx
 
Introduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxIntroduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptx
 
AZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTXAZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTX
 
Immunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptImmunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.ppt
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptx
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
 
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenarios
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annova
 
projectile motion, impulse and moment
projectile  motion, impulse  and  momentprojectile  motion, impulse  and  moment
projectile motion, impulse and moment
 
The Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionThe Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and Function
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and Pitfalls
 
Quarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsQuarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and Functions
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptx
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girls
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPR
 
whole genome sequencing new and its types including shortgun and clone by clone
whole genome sequencing new  and its types including shortgun and clone by clonewhole genome sequencing new  and its types including shortgun and clone by clone
whole genome sequencing new and its types including shortgun and clone by clone
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptx
 

Quantum Field Theory and the Limits of Knowledge

  • 1. Sean Carroll, Caltech Quantum Field Theory and the Limits of Knowledge
  • 2. Two claims: 1. The laws of physics underlying everyday life are completely known. 2. The structure of quantum field theory provides a warrant for claim 1.
  • 3. “Laws of physics underlying everyday life” = The Core Theory • Quantum field theory in a 4-dimensional spacetime. • Matter (fermions): quarks,leptons. • Strong, weak, electromagnetic forces. • Gravitation = general relativity. • Higgs field.
  • 4. Long history of embarrassingly premature triumphalism. “[We are] probably nearing the limit of all we can know about astronomy.” – Simon Newcomb, 1888 “The more important fundamental laws and facts of physical science have all been discovered.” – Albert Michelson, 1894 “Physics as we know it will be over in six months.” – Max Born, 1928 There is a 50% chance that “we would find a complete unified theory of everything by the end of the century.” – Stephen Hawking, 1980
  • 5. Perfectly obvious but necessary caveats We’re nowhere close to understanding the fundamental theory of everything. We don’t understand the non-everyday: dark matter, quantum gravity, the Big Bang… We don’t fully understand macroscopic aggregations: condensed matter, chemistry, biology, economics… Quantum mechanics or quantum field theory could always be wrong.
  • 6. Known particles/forces, general relativity (Core theory) Dark matter/energy, new particles/forces, hidden sectors Underlying reality (theory of everything) Higher-level macro-phenomena of everyday life Astrophysics, cosmology
  • 7. The Core Theory in more detail: Quantum Mechanics Think of “configurations,” e.g. the location x of a particle. Assign a complex number to every possible configuration. That describes a quantum state: a “wave function” Ψ(x) that lives in a very-high-dimensional Hilbert space. Schrödinger evolution equation: x x Ψ(x)
  • 8. Measurements in Quantum Mechanics But we don’t “see” the wave function. Measurements return some specific value of the configuration (or other observable). Probability of measurement outcome = |wave function|2 . After measurement, wave function “collapses” (becomes suddenly concentrated on observed outcome). Seems absurd. But – good enough to successfully predict the outcome of every experiment ever done.
  • 9. (Some) Observables are Quantized Standard example: Simple Harmonic Oscillator. Particle moving in a potential , where x is the position and ω is the frequency. Energy is quantized into discrete levels:
  • 10. Quantum Field Theory QFT is not a successor/alternative to QM; it’s just a particular QM model, with a particular Hamiltonian. Namely: “configurations” are “values of (relativistic) fields throughout space.” E.g. φ(x). The quantum state (wave function) is a complex amplitude for each possible field configuration, Ψ[φ(x)]. Examples: electromagnetic field, electron field, top quark field, gravitational field (metric), etc.
  • 11. Particles from fields Each mode acts like a simple harmonic oscillator! Energy levels = number of particles. Wavelength = 1/momentum. Indeed, relativity+QM+particles QFT. Decompose oscillating field into a sum of “modes” of different wavelengths (Fourier transform): = + + …+
  • 12. Interactions Particle interactions are encoded in Feynman diagrams. = + + + …
  • 13. Adding up virtual particles Every particle has a momentum, and total is conserved at each vertex. When there are loops, momentum “flowing through the loop” (q) is arbitrary, and gets summed over. Result is often infinite.
  • 14. don’t need to worry about what happens here Ken Wilson: organize QFT by energy/length scale Remember: energy & momentum ~ 1/(wavelength). IR UV Λ (“cutoff” energy scale) long wavelengths/ low energies short wavelengths/ high energies
  • 15. Think of your theory as only describing energies below the ultraviolet cutoff scale Λ. I.e., only include wavelengths longer than 1/Λ. Result is an effective field theory below Λ. Effective Field Theory
  • 16. All diagrams with N legs contribute to an interaction term (in Lagrangian) between N particles. There are an infinite number of terms in EFT equations of motion… φ4 φ8 φ6
  • 17. Both the field φ and the cutoff Λ have units of energy, and the Lagrangian governing interactions is (energy)4 . So schematically we have: Higher-order terms are negligible at low energy (<< Λ). Only a finite number of relevant/marginal interactions. … but only a finite number of terms matter “relevant” “marginal” “irrelevant”
  • 18. At energies below Λ, an EFT can be a complete theory. Above Λ, new phenomena can kick in. E.g. Fermi theory of weak interactions Standard Model. Effective field theories tell us their regime of applicability: below the ultraviolet cutoff Λ. Fermi coupling
  • 19. “We haven’t quantized gravity,” but I’m treating gravity like a perfectly ordinary effective field theory. Because it is – as long as gravity is weak (far from black holes, Big Bang, etc.). In terms of curvature parameter R, interactions look like Here on Earth, 1st term is 1050 times bigger than 2nd . Quantum Gravity?
  • 20. A given effective field theory with cutoff Λ could have many “ultraviolet completions” at higher energies. That’s why it’s hard to do experiments relevant to quantum gravity: we expect Λ ~ Eplanck ~ 1015 ELHC. Multiple realizability loop quantum gravity string theory dynamical triangulations
  • 21. Known particles/forces, general relativity (Core theory) Dark matter/energy, new particles/forces, hidden sectors Underlying reality (theory of everything) Higher-level emergent phenomena of everyday life Astrophysics, cosmology Underlying physics only influences us via Core Theory.
  • 22. What about new particles/forces? strongly interacting light/ long range/ low energy heavy/ short range/ high energy weakly interacting accessible inaccessible known knowns known unknowns Unknown unknowns = violations of QFT itself.
  • 23. QFT puts very tight constraints on new phenomena. time new particle new interaction If a new particle can interact with ordinary particles: Then that particle can be created in high-energy collisions. “Crossing symmetry.”
  • 24. Constraints on new particles As-yet-undiscovered particles must be either: 1. very weakly interacting, 2. too heavy to create, or 3. too short-lived to detect. In any of those cases, the new particle would be irrelevant to our everyday lives.
  • 25. To be relevant to everyday physics, any new forces must interact with protons, neutrons, electrons, and/or photons. Experiments are ongoing (torsion balances) to search for new, weak, long-range forces. Two ways to hide: 1. weak interactions, or 2. very short ranges. Constraints on new forces
  • 26. Strength(relativetogravity) Range [Long et al. 2003; Antoniadis 2003] Experimental limits on new forces Ruled Out Allowed new gravitational- strength force (10-36 E&M)
  • 27. Known particles/forces, general relativity (Core theory) Dark matter/energy, new particles/forces, hidden sectors Underlying reality (theory of everything) Higher-level emergent phenomena of everyday life Astrophysics, cosmology New particles/forces are too heavy/weak to influence us.
  • 28. gravity other forces matter Higgs quantum mechanics spacetime Punchline: the laws of physics underlying everyday experience. Other phenomena are too massive or weakly-coupled to have any impact on the particles of which we are made.
  • 29. • Astrology is not correct. Implications of the Core Theory • You can’t bend spoons with your mind. • The soul does not survive the body.
  • 30. 3. Accessible deviations from textbook QM. (Hidden variables, spontaneous/induced collapse.) Loopholes? 2. Breakdown of QFT itself. E.g. non-local constraints/ interactions from quantum gravity (holography). 1. New forces with environment-dependent couplings. 4. Divine intervention.
  • 31. Known particles/forces, general relativity (Core theory) Dark matter/energy, new particles/forces, hidden sectors Underlying reality (theory of everything) Higher-level emergent phenomena of everyday life Astrophysics, cosmology