SlideShare uma empresa Scribd logo
1 de 34
Baixar para ler offline
1
Introduction
to
Programmable Logic Devices
Introduction
2
 There are two types of memories that are used in digital systems:
Random-access memory(RAM):
perform both the write and read operations.
Read-only memory(ROM):
perform only the read operation.
 The read-only memory is a programmable logic device. Other such
units are the
 Programmable logic array(PLA)
 Programmable array logic(PAL)
 Field-programmable gate array(FPGA).
Array logic
 A typical programmable logic device may have hundreds to
millions of gates interconnected through hundreds to
thousands of internal paths.
 In order to show the internal logic diagram in a concise
form, it is necessary to employ a special gate symbology
applicable to array logic.
3
Random-Access Memory
 A memory unit stores binary information in groups of bits called words.
1 byte = 8 bits
1 word = 2 bytes
 The communication between a memory and its environment is achieved
through data input and output lines, address selection lines, and control
lines that specify the direction of transfer.
4
Content of a memory
 Each word in memory is
assigned an identification
number, called an address,
starting from 0 up to 2k
-1,
where k is the number of
address lines.
 The number of words in a
memory with one of the
letters K=210, M=220, or
G=230.
64K = 216
2M = 221
4G = 232
5
Write and Read operations
6
 Transferring a new word to be stored into
memory:
1. Apply the binary address of the desired word to
the address lines.
2. Apply the data bits that must be stored in
memory to the data input lines.
3. Activate the write input.
Write and Read operations
 Transferring a stored word out of memory:
1. Apply the binary address of the desired word to the
address lines.
2. Activate the read input.
 Commercial memory sometimes provide the two control
inputs for reading and writing in a somewhat different
configuration in table 7-1.
7
Types of memories
8
 Memory units that lose stored information when
power is turned off are said to be volatile.
 Both static and dynamic, are of this category since
the binary cells need external power to maintain
the stored information.
 Nonvolatile memory, such as magnetic disk, ROM,
retains its stored information after removal of
power.
Read-Only Memory
 A block diagram of a ROM is shown below. It consists of k
address inputs and n data outputs.
 The number of words in a ROM is determined from the fact
that k address input lines are needed to specify 2k
words.
10
Construction of ROM
 Each output of the decoder represents a memory address.
 Each OR gate must be considered as having 32 inputs.
 A 2k
X n ROM will have an internal k X 2k
decoder and n OR
gates.
11
Truth table of ROM
 A programmable connection between to lines is logically
equivalent to a switch that can be altered to either be close
or open.
 Intersection between two lines is sometimes called a cross-
point.
12
Programming the ROM
In Table 7-3, 0  no connection
1  connection
Address 3 = 10110010 is permanent storage using fuse link
13
1 0 1 1 0 0 1 0
X : means connection
Combinational circuit implementation
14
 The internal operation of a ROM can be interpreted in two
way: First, a memory unit that contains a fixed pattern of
stored words. Second, implements a combinational circuit.
 Fig. 7-11 may be considered as a combinational circuit with
eight outputs, each being a function of the five input
variables.
A7(I4, I3, I2, I1, I0) = Σ(0,2,3…,29)
In Table 7-3, output A7
Sum of minterms
Example
 Design a combinational circuit using a ROM. The circuit accepts a 3-bit
number and generates an output binary number equal to the square of
the input number.
Derive truth table first
15
Example
16
Types of ROMs
17
 The required paths in a ROM may be programmed in
four different ways.
1. Mask programming: fabrication process
2. Read-only memory or PROM: blown fuse /fuse intact
3. Erasable PROM or EPROM: placed under a special
ultraviolet light for a given period of time will erase the
pattern in ROM.
4. Electrically-erasable PROM(EEPROM): erased with an
electrical signal instead of ultraviolet light.
Combinational PLDs
18
 A combinational PLD is an integrated circuit with
programmable gates divided into an AND array and an OR
array to provide an AND-OR sum of product
implementation.
 PROM: fixed AND array constructed as a decoder and
programmable OR array.
 PAL: programmable AND array and fixed OR array.
 PLA: both the AND and OR arrays can be programmed.
Combinational PLDs
19
Programmable Logic Array
24
 Fig.7-14, the decoder in PROM is replaced by an array of
AND gates that can be programmed to generate any product
term of the input variables.
 The product terms are then connected to OR gates to
provide the sum of products for the required Boolean
functions.
 The output is inverted when the XOR input is connected to 1
(since x⊕1 = x’). The output doesn’t change and connect to 0
(since x⊕0 = x).
Programming Table
25
1. First: lists the product terms numerically
2. Second: specifies the required paths between
inputs and AND gates
3. Third: specifies the paths between the AND and
OR gates
4. For each output variable, we may have a T(ture)
or C(complement) for programming the XOR
gate
PLA
F1 = AB’+AC+A’BC’
F2 = (AC+BC)’
26
PLA
27
Simplification of PLA
28
 Careful investigation must be undertaken in order
to reduce the number of distinct product terms,
PLA has a finite number of AND gates.
 Both the true and complement of each function
should be simplified to see which one can be
expressed with fewer product terms and which one
provides product terms that are common to other
functions.
Example 7-2
Implement the following two Boolean functions with a PLA:
F1(A, B, C) = ∑(0, 1, 2, 4)
F2(A, B, C) = ∑(0, 5, 6, 7)
The two functions are simplified in the maps of Fig.7-15
29
1 elements
0 elements
PLA table by simplifying the function
 Both the true and complement of
the functions are simplified in
sum of products.
 We can find the same terms from
the group terms of the functions
of F1, F1’,F2 and F2’ which will
make the minimum terms.
F1 = (AB + AC + BC)’
F2 = AB + AC + A’B’C’
30
PLA implementation
31
AB
AC
BC
A’B’C’
32
Example 1:
33
Programmable Array Logic
 The PAL is a programmable logic device with a fixed OR array and a
programmable AND array.
34
PAL
35
 When designing with a PAL, the Boolean functions
must be simplified to fit into each section.
 Unlike the PLA, a product term cannot be shared
among two or more OR gates. Therefore, each
function can be simplified by itself without regard
to common product terms.
 The output terminals are sometimes driven by
three-state buffers or inverters.
Example
36
w(A, B, C, D) = ∑(2, 12, 13)
x(A, B, C, D) = ∑(7, 8, 9, 10, 11, 12, 13, 14, 15)
y(A, B, C, D) = ∑(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)
z(A, B, C, D) = ∑(1, 2, 8, 12, 13)
Simplifying the four functions as following Boolean functions:
w = ABC’ + A’B’CD’
x = A + BCD
w = A’B + CD + B’D’
w = ABC’ + A’B’CD’ + AC’D’ + A’B’C’D = w + AC’D’ + A’B’C’D
PAL Table
 z has four product terms, and we can replace by w with two
product terms, this will reduce the number of terms for z
from four to three.
37
PAL implementation
38
A
B
C
D
w
x
y
z
39

Mais conteúdo relacionado

Mais procurados

Programmable logic array
Programmable logic arrayProgrammable logic array
Programmable logic arrayHuba Akhtar
 
Latches and flip flop
Latches and flip flopLatches and flip flop
Latches and flip flopShuaib Hotak
 
8085 MICROPROCESSOR ARCHITECTURE AND ITS OPERATIONS
8085 MICROPROCESSOR ARCHITECTURE AND ITS OPERATIONS8085 MICROPROCESSOR ARCHITECTURE AND ITS OPERATIONS
8085 MICROPROCESSOR ARCHITECTURE AND ITS OPERATIONSRamaPrabha24
 
PPT on 8085 Microprocessor
PPT on 8085 Microprocessor  PPT on 8085 Microprocessor
PPT on 8085 Microprocessor DebrajJana4
 
Microprocessor Presentation
Microprocessor PresentationMicroprocessor Presentation
Microprocessor Presentationalaminmasum1
 
8086 microprocessor
8086 microprocessor8086 microprocessor
8086 microprocessorVikas Gupta
 
Data transfer techniques 8085
Data transfer techniques 8085Data transfer techniques 8085
Data transfer techniques 8085ShivamSood22
 
Binary multiplier
Binary multiplierBinary multiplier
Binary multipliereldhomv1
 
basic logic gates
 basic logic gates basic logic gates
basic logic gatesvishal gupta
 
Multiplexers and Demultiplexers
Multiplexers and DemultiplexersMultiplexers and Demultiplexers
Multiplexers and DemultiplexersGargiKhanna1
 
Parity Generator and Parity Checker
Parity Generator and Parity CheckerParity Generator and Parity Checker
Parity Generator and Parity CheckerJignesh Navdiya
 
Logic gates and NAND and NOR univarsal gates
Logic gates and NAND and NOR univarsal gatesLogic gates and NAND and NOR univarsal gates
Logic gates and NAND and NOR univarsal gatesDhwanil Champaneria
 
Combinational circuits
Combinational circuits Combinational circuits
Combinational circuits DrSonali Vyas
 
Architecture of 8051 microcontroller))
Architecture of 8051 microcontroller))Architecture of 8051 microcontroller))
Architecture of 8051 microcontroller))Ganesh Ram
 

Mais procurados (20)

Programmable logic array
Programmable logic arrayProgrammable logic array
Programmable logic array
 
Latches and flip flop
Latches and flip flopLatches and flip flop
Latches and flip flop
 
Latches and flip flops
Latches and flip flopsLatches and flip flops
Latches and flip flops
 
8085 MICROPROCESSOR ARCHITECTURE AND ITS OPERATIONS
8085 MICROPROCESSOR ARCHITECTURE AND ITS OPERATIONS8085 MICROPROCESSOR ARCHITECTURE AND ITS OPERATIONS
8085 MICROPROCESSOR ARCHITECTURE AND ITS OPERATIONS
 
PPT on 8085 Microprocessor
PPT on 8085 Microprocessor  PPT on 8085 Microprocessor
PPT on 8085 Microprocessor
 
Microprocessor Presentation
Microprocessor PresentationMicroprocessor Presentation
Microprocessor Presentation
 
8086 microprocessor
8086 microprocessor8086 microprocessor
8086 microprocessor
 
Data transfer techniques 8085
Data transfer techniques 8085Data transfer techniques 8085
Data transfer techniques 8085
 
Binary multiplier
Binary multiplierBinary multiplier
Binary multiplier
 
basic logic gates
 basic logic gates basic logic gates
basic logic gates
 
Shift Registers
Shift RegistersShift Registers
Shift Registers
 
Multiplexers and Demultiplexers
Multiplexers and DemultiplexersMultiplexers and Demultiplexers
Multiplexers and Demultiplexers
 
Input output interface
Input output interfaceInput output interface
Input output interface
 
Parity Generator and Parity Checker
Parity Generator and Parity CheckerParity Generator and Parity Checker
Parity Generator and Parity Checker
 
Multiplexers
MultiplexersMultiplexers
Multiplexers
 
PLDs
PLDsPLDs
PLDs
 
Logic gates and NAND and NOR univarsal gates
Logic gates and NAND and NOR univarsal gatesLogic gates and NAND and NOR univarsal gates
Logic gates and NAND and NOR univarsal gates
 
Combinational circuits
Combinational circuits Combinational circuits
Combinational circuits
 
Multiplexers & Demultiplexers
Multiplexers & DemultiplexersMultiplexers & Demultiplexers
Multiplexers & Demultiplexers
 
Architecture of 8051 microcontroller))
Architecture of 8051 microcontroller))Architecture of 8051 microcontroller))
Architecture of 8051 microcontroller))
 

Semelhante a Programmable Logic Devices

Memory intrface and addrs modes
Memory intrface and addrs modesMemory intrface and addrs modes
Memory intrface and addrs modesbalbirvirdi
 
EC8392 -DIGITAL ELECTRONICS -II YEAR ECE-by S.SESHA VIDHYA /ASP/ ECE/ RMKCET
EC8392 -DIGITAL ELECTRONICS -II YEAR ECE-by S.SESHA VIDHYA /ASP/ ECE/ RMKCETEC8392 -DIGITAL ELECTRONICS -II YEAR ECE-by S.SESHA VIDHYA /ASP/ ECE/ RMKCET
EC8392 -DIGITAL ELECTRONICS -II YEAR ECE-by S.SESHA VIDHYA /ASP/ ECE/ RMKCETSeshaVidhyaS
 
UNIT I- CPLD & FPGA ARCHITECTURE & APPLICATIONS
UNIT I- CPLD & FPGA ARCHITECTURE & APPLICATIONSUNIT I- CPLD & FPGA ARCHITECTURE & APPLICATIONS
UNIT I- CPLD & FPGA ARCHITECTURE & APPLICATIONSDr.YNM
 
System design using HDL - Module 3
System design using HDL - Module 3System design using HDL - Module 3
System design using HDL - Module 3Aravinda Koithyar
 
Programmable Logic Array(PLA), digital circuits
Programmable Logic Array(PLA), digital circuits Programmable Logic Array(PLA), digital circuits
Programmable Logic Array(PLA), digital circuits warda aziz
 
PROGRAMMABLE LOGIC DEVICES-PAL, PROM,PLAs
PROGRAMMABLE LOGIC DEVICES-PAL, PROM,PLAsPROGRAMMABLE LOGIC DEVICES-PAL, PROM,PLAs
PROGRAMMABLE LOGIC DEVICES-PAL, PROM,PLAsDianaD43
 
Lab 7 -RAM and ROM, Xilinx, Digelent BASYS experimentor board
Lab 7 -RAM and ROM, Xilinx, Digelent BASYS experimentor boardLab 7 -RAM and ROM, Xilinx, Digelent BASYS experimentor board
Lab 7 -RAM and ROM, Xilinx, Digelent BASYS experimentor boardKatrina Little
 
memory-interfacing.ppt
memory-interfacing.pptmemory-interfacing.ppt
memory-interfacing.pptVanitha472439
 
programmable logic devices part 1
programmable logic devices part 1programmable logic devices part 1
programmable logic devices part 1Kundan Gupta
 
siudhai ki marks sheih shuuu kvms jiiiiv
siudhai ki marks sheih shuuu kvms jiiiivsiudhai ki marks sheih shuuu kvms jiiiiv
siudhai ki marks sheih shuuu kvms jiiiivwonderboystarpope
 
4th yr dmumicrocontroller1
4th yr dmumicrocontroller14th yr dmumicrocontroller1
4th yr dmumicrocontroller1haymanotyehuala
 
Module 2 instruction set
Module 2 instruction set Module 2 instruction set
Module 2 instruction set Deepak John
 
Computer Organization and 8085 microprocessor notes
Computer Organization and 8085 microprocessor notesComputer Organization and 8085 microprocessor notes
Computer Organization and 8085 microprocessor notesLakshmi Sarvani Videla
 
Lab ObjectivesThe objective for this lab is to review the Motoro.docx
Lab ObjectivesThe objective for this lab is to review the Motoro.docxLab ObjectivesThe objective for this lab is to review the Motoro.docx
Lab ObjectivesThe objective for this lab is to review the Motoro.docxjesseniasaddler
 

Semelhante a Programmable Logic Devices (20)

Basittttt
BasitttttBasittttt
Basittttt
 
Memory intrface and addrs modes
Memory intrface and addrs modesMemory intrface and addrs modes
Memory intrface and addrs modes
 
EC8392 -DIGITAL ELECTRONICS -II YEAR ECE-by S.SESHA VIDHYA /ASP/ ECE/ RMKCET
EC8392 -DIGITAL ELECTRONICS -II YEAR ECE-by S.SESHA VIDHYA /ASP/ ECE/ RMKCETEC8392 -DIGITAL ELECTRONICS -II YEAR ECE-by S.SESHA VIDHYA /ASP/ ECE/ RMKCET
EC8392 -DIGITAL ELECTRONICS -II YEAR ECE-by S.SESHA VIDHYA /ASP/ ECE/ RMKCET
 
UNIT I- CPLD & FPGA ARCHITECTURE & APPLICATIONS
UNIT I- CPLD & FPGA ARCHITECTURE & APPLICATIONSUNIT I- CPLD & FPGA ARCHITECTURE & APPLICATIONS
UNIT I- CPLD & FPGA ARCHITECTURE & APPLICATIONS
 
System design using HDL - Module 3
System design using HDL - Module 3System design using HDL - Module 3
System design using HDL - Module 3
 
Programmable Logic Array(PLA), digital circuits
Programmable Logic Array(PLA), digital circuits Programmable Logic Array(PLA), digital circuits
Programmable Logic Array(PLA), digital circuits
 
PROGRAMMABLE LOGIC DEVICES-PAL, PROM,PLAs
PROGRAMMABLE LOGIC DEVICES-PAL, PROM,PLAsPROGRAMMABLE LOGIC DEVICES-PAL, PROM,PLAs
PROGRAMMABLE LOGIC DEVICES-PAL, PROM,PLAs
 
Lab 7 -RAM and ROM, Xilinx, Digelent BASYS experimentor board
Lab 7 -RAM and ROM, Xilinx, Digelent BASYS experimentor boardLab 7 -RAM and ROM, Xilinx, Digelent BASYS experimentor board
Lab 7 -RAM and ROM, Xilinx, Digelent BASYS experimentor board
 
memory-interfacing.ppt
memory-interfacing.pptmemory-interfacing.ppt
memory-interfacing.ppt
 
programmable logic devices part 1
programmable logic devices part 1programmable logic devices part 1
programmable logic devices part 1
 
assignment 1-MC.pdf
assignment 1-MC.pdfassignment 1-MC.pdf
assignment 1-MC.pdf
 
siudhai ki marks sheih shuuu kvms jiiiiv
siudhai ki marks sheih shuuu kvms jiiiivsiudhai ki marks sheih shuuu kvms jiiiiv
siudhai ki marks sheih shuuu kvms jiiiiv
 
8085 (1)
8085 (1)8085 (1)
8085 (1)
 
4th yr dmumicrocontroller1
4th yr dmumicrocontroller14th yr dmumicrocontroller1
4th yr dmumicrocontroller1
 
Pdc 2 mark
Pdc   2 markPdc   2 mark
Pdc 2 mark
 
Module 2 instruction set
Module 2 instruction set Module 2 instruction set
Module 2 instruction set
 
Logic Fe Tcom
Logic Fe TcomLogic Fe Tcom
Logic Fe Tcom
 
Computer Organization and 8085 microprocessor notes
Computer Organization and 8085 microprocessor notesComputer Organization and 8085 microprocessor notes
Computer Organization and 8085 microprocessor notes
 
8085 intro
8085 intro8085 intro
8085 intro
 
Lab ObjectivesThe objective for this lab is to review the Motoro.docx
Lab ObjectivesThe objective for this lab is to review the Motoro.docxLab ObjectivesThe objective for this lab is to review the Motoro.docx
Lab ObjectivesThe objective for this lab is to review the Motoro.docx
 

Último

Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTSneha Padhiar
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfisabel213075
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewsandhya757531
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionSneha Padhiar
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Romil Mishra
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfManish Kumar
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfDrew Moseley
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfNainaShrivastava14
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdfAkritiPradhan2
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Communityprachaibot
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 
signals in triangulation .. ...Surveying
signals in triangulation .. ...Surveyingsignals in triangulation .. ...Surveying
signals in triangulation .. ...Surveyingsapna80328
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxStephen Sitton
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Sumanth A
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfChristianCDAM
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodManicka Mamallan Andavar
 

Último (20)

Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdf
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overview
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based question
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdf
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Community
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 
signals in triangulation .. ...Surveying
signals in triangulation .. ...Surveyingsignals in triangulation .. ...Surveying
signals in triangulation .. ...Surveying
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptx
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdf
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument method
 

Programmable Logic Devices

  • 2. Introduction 2  There are two types of memories that are used in digital systems: Random-access memory(RAM): perform both the write and read operations. Read-only memory(ROM): perform only the read operation.  The read-only memory is a programmable logic device. Other such units are the  Programmable logic array(PLA)  Programmable array logic(PAL)  Field-programmable gate array(FPGA).
  • 3. Array logic  A typical programmable logic device may have hundreds to millions of gates interconnected through hundreds to thousands of internal paths.  In order to show the internal logic diagram in a concise form, it is necessary to employ a special gate symbology applicable to array logic. 3
  • 4. Random-Access Memory  A memory unit stores binary information in groups of bits called words. 1 byte = 8 bits 1 word = 2 bytes  The communication between a memory and its environment is achieved through data input and output lines, address selection lines, and control lines that specify the direction of transfer. 4
  • 5. Content of a memory  Each word in memory is assigned an identification number, called an address, starting from 0 up to 2k -1, where k is the number of address lines.  The number of words in a memory with one of the letters K=210, M=220, or G=230. 64K = 216 2M = 221 4G = 232 5
  • 6. Write and Read operations 6  Transferring a new word to be stored into memory: 1. Apply the binary address of the desired word to the address lines. 2. Apply the data bits that must be stored in memory to the data input lines. 3. Activate the write input.
  • 7. Write and Read operations  Transferring a stored word out of memory: 1. Apply the binary address of the desired word to the address lines. 2. Activate the read input.  Commercial memory sometimes provide the two control inputs for reading and writing in a somewhat different configuration in table 7-1. 7
  • 8. Types of memories 8  Memory units that lose stored information when power is turned off are said to be volatile.  Both static and dynamic, are of this category since the binary cells need external power to maintain the stored information.  Nonvolatile memory, such as magnetic disk, ROM, retains its stored information after removal of power.
  • 9. Read-Only Memory  A block diagram of a ROM is shown below. It consists of k address inputs and n data outputs.  The number of words in a ROM is determined from the fact that k address input lines are needed to specify 2k words. 10
  • 10. Construction of ROM  Each output of the decoder represents a memory address.  Each OR gate must be considered as having 32 inputs.  A 2k X n ROM will have an internal k X 2k decoder and n OR gates. 11
  • 11. Truth table of ROM  A programmable connection between to lines is logically equivalent to a switch that can be altered to either be close or open.  Intersection between two lines is sometimes called a cross- point. 12
  • 12. Programming the ROM In Table 7-3, 0  no connection 1  connection Address 3 = 10110010 is permanent storage using fuse link 13 1 0 1 1 0 0 1 0 X : means connection
  • 13. Combinational circuit implementation 14  The internal operation of a ROM can be interpreted in two way: First, a memory unit that contains a fixed pattern of stored words. Second, implements a combinational circuit.  Fig. 7-11 may be considered as a combinational circuit with eight outputs, each being a function of the five input variables. A7(I4, I3, I2, I1, I0) = Σ(0,2,3…,29) In Table 7-3, output A7 Sum of minterms
  • 14. Example  Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates an output binary number equal to the square of the input number. Derive truth table first 15
  • 16. Types of ROMs 17  The required paths in a ROM may be programmed in four different ways. 1. Mask programming: fabrication process 2. Read-only memory or PROM: blown fuse /fuse intact 3. Erasable PROM or EPROM: placed under a special ultraviolet light for a given period of time will erase the pattern in ROM. 4. Electrically-erasable PROM(EEPROM): erased with an electrical signal instead of ultraviolet light.
  • 17. Combinational PLDs 18  A combinational PLD is an integrated circuit with programmable gates divided into an AND array and an OR array to provide an AND-OR sum of product implementation.  PROM: fixed AND array constructed as a decoder and programmable OR array.  PAL: programmable AND array and fixed OR array.  PLA: both the AND and OR arrays can be programmed.
  • 19. Programmable Logic Array 24  Fig.7-14, the decoder in PROM is replaced by an array of AND gates that can be programmed to generate any product term of the input variables.  The product terms are then connected to OR gates to provide the sum of products for the required Boolean functions.  The output is inverted when the XOR input is connected to 1 (since x⊕1 = x’). The output doesn’t change and connect to 0 (since x⊕0 = x).
  • 20. Programming Table 25 1. First: lists the product terms numerically 2. Second: specifies the required paths between inputs and AND gates 3. Third: specifies the paths between the AND and OR gates 4. For each output variable, we may have a T(ture) or C(complement) for programming the XOR gate
  • 23. Simplification of PLA 28  Careful investigation must be undertaken in order to reduce the number of distinct product terms, PLA has a finite number of AND gates.  Both the true and complement of each function should be simplified to see which one can be expressed with fewer product terms and which one provides product terms that are common to other functions.
  • 24. Example 7-2 Implement the following two Boolean functions with a PLA: F1(A, B, C) = ∑(0, 1, 2, 4) F2(A, B, C) = ∑(0, 5, 6, 7) The two functions are simplified in the maps of Fig.7-15 29 1 elements 0 elements
  • 25. PLA table by simplifying the function  Both the true and complement of the functions are simplified in sum of products.  We can find the same terms from the group terms of the functions of F1, F1’,F2 and F2’ which will make the minimum terms. F1 = (AB + AC + BC)’ F2 = AB + AC + A’B’C’ 30
  • 28. 33
  • 29. Programmable Array Logic  The PAL is a programmable logic device with a fixed OR array and a programmable AND array. 34
  • 30. PAL 35  When designing with a PAL, the Boolean functions must be simplified to fit into each section.  Unlike the PLA, a product term cannot be shared among two or more OR gates. Therefore, each function can be simplified by itself without regard to common product terms.  The output terminals are sometimes driven by three-state buffers or inverters.
  • 31. Example 36 w(A, B, C, D) = ∑(2, 12, 13) x(A, B, C, D) = ∑(7, 8, 9, 10, 11, 12, 13, 14, 15) y(A, B, C, D) = ∑(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15) z(A, B, C, D) = ∑(1, 2, 8, 12, 13) Simplifying the four functions as following Boolean functions: w = ABC’ + A’B’CD’ x = A + BCD w = A’B + CD + B’D’ w = ABC’ + A’B’CD’ + AC’D’ + A’B’C’D = w + AC’D’ + A’B’C’D
  • 32. PAL Table  z has four product terms, and we can replace by w with two product terms, this will reduce the number of terms for z from four to three. 37
  • 34. 39