Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
პრეზენტაცია
Next
Download to read offline and view in fullscreen.

Share

წარმოებული და მისი თვისებები

Download to read offline

Related Audiobooks

Free with a 30 day trial from Scribd

See all

წარმოებული და მისი თვისებები

  1. 1. საგანი: კალკულუსი ავტორები: კაპანაძე გიორგი წარმოებული და მისი თვისებები ლექტორი : ჯორჯიაშვილი ნატო ილიას სახელმწიფო უნივერსიტეტი
  2. 2. • რა არის წარმოებული? • რა არის კერძო წარმოებული? • მეორე რიგის წარმოებული • ფერმას თეორემა • როლის თეორემა
  3. 3. რა არის წარმოებული? • ფუნქციის წარმოებული X წერტილში ეწოდება ამ წერტილში ფუნქციის ნაზრდის არგუმენტის ნაზრდთან შეფარდების ზღვარს(თუ ეს ზღვარი არსებობს),როცა არგუმენტის ნაზრდი მიისწრაფვის ნულისკენ... 𝒇′ 𝒙 = 𝒍𝒊𝒎 ∆𝒙→∞ 𝜟𝒚 𝜟𝒙 = 𝒍𝒊𝒎 ∆𝒙→∞ 𝒇 𝒙 + ∆𝒙 − 𝒇(𝒙) ∆𝒙 ფუნქციის წარმოებულის აღსანიშნავად მიღებულია შემდეგი აღნიშვნები: f’(x) ან y’ ასევე f’(x)= 𝑑𝑦 𝑑𝑥 ასევე არსებობს აქედან გამომდინარე უფრო მარტივი ფორმულა ფუნქციის წარმოებულის საპოვნელად. (𝑎𝑥 𝑏)′ = 𝑎𝑏𝑥 𝑏−1
  4. 4. რა არის კერძო წარმოებული? • Z=f(x,y) ფუნქციის კეტძო წარმოებული x ცვლადით ეწოდება ფუნქციის კერძო ნაზრდის არგუმენტის ნაზრდთან შეფარდების ზღვარს (თუ ეს ზღვარი არსებობს) lim ∆𝑥→0 ∆𝑧 𝑥 ∆𝑥 = lim ∆𝑥→0 𝑓 𝑥 + ∆𝑥, 𝑦 − 𝑓(𝑥, 𝑦) ∆𝑥 lim ∆𝑦→0 ∆𝑧 𝑦 ∆𝑦 = lim ∆𝑥→0 𝑓 𝑥, 𝑦 + ∆𝑦 − 𝑓(𝑥, 𝑦) ∆𝑦 გვაქვს შესაბამისი აღნიშვნები: 𝜕𝑧 𝑥 𝜕𝑥 , 𝑓𝑥 ′, 𝜕𝑓(𝑥,𝑦) 𝜕𝑥 , 𝜕𝑧 𝑦 𝜕𝑦 , 𝑓𝑦 ′ , 𝜕𝑓(𝑥,𝑦) 𝜕𝑦
  5. 5. მეორე რიგის წარმოებული • თუ გვსურს ვიპოვოთ მეორე რიგის წარმოებული საჭიროა მოვიქცეთ იგივენაირად, მაგრამ განსხვავებით პირველი რიგის წარმოებულისგან ეს მოქმედება ორჯერ უნდა ჩატარდეს. 𝒇′ 𝒙 = 𝒍𝒊𝒎 ∆𝒙→∞ 𝜟𝒚 𝜟𝒙 = 𝒍𝒊𝒎 ∆𝒙→∞ 𝒇 𝒙 + ∆𝒙 − 𝒇(𝒙) ∆𝒙 𝒇′′ 𝒙 = 𝒍𝒊𝒎 ∆𝒙→∞ 𝜟𝒚′ 𝜟𝒙′ = 𝒍𝒊𝒎 ∆𝒙→∞ 𝒇′ 𝒙+∆𝒙 −𝒇′(𝒙) ∆′𝒙 =(f’(x))’ გამარტივებული სახით გვაქვს შემდეგი ფორმულა: (𝑎𝑥 𝑏 )′′ = (𝑎𝑏𝑥 𝑏−1 )′=ab(b-1) 𝑥 𝑏−2
  6. 6. ფერმას თეორემა თუ x წერტილში წარმოებად f(x) ფუნქციას ამავე წერტილში აქვს ექსტრემუმი,მაშინ f’(x)=0.
  7. 7. როლის თეორემა თუ f(x) ფუნქცია უწყვეტია [a;b] სეგმენტზე, წარმოებადი (a;b) ინტერვალზე და ამასთან ,f(a)=f(b) , მაშინ არსებობს ისეთი c∈ a; b წერტილი, რომ f′ c = 0.
  8. 8. მადლობა ყურადღებოსათვის!
  • NikaMarkozashvili

    Oct. 27, 2014

Views

Total views

7,867

On Slideshare

0

From embeds

0

Number of embeds

3

Actions

Downloads

15

Shares

0

Comments

0

Likes

1

×