SlideShare a Scribd company logo
1 of 40
Download to read offline
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 1
Stiffness Matrix Method
a) Fundamental concepts of stiffness method of analysis, formulation of stiffness
matrix, application to trusses by member approach. Application to beams by
structure approach only, (Involving not more than three unknowns).
b) Application to rigid jointed rectangular portal frames by structure approach only
(Involving not more than three unknowns).
Introduction_______________________________________________________
There are several methods available in the literature for the analysis of continuous
beams such as slope deflection method, moment distribution method, flexibility
matrix method, stiffness matrix method, three moment theorem etc. However
among all these methods Stiffness Matrix Method is program oriented method. In
this method, the given indeterminate structure is first made kinematically
determinate by introducing constraints at the nodes. The required number of
constraints is equal to non-zero joint displacements is called as degrees of freedom
or kinematic indeterminacy. Stiffness matrix method is advanced tool for analyzing
determinate structures. This method is a matrix version of classical generalized
slope-deflection method. Conditions of joint equilibrium are used to form
equations in unknown displacements.
Steps for the solution of Indeterminate Beams by Stiffness Method_________
1. Determine the degree of kinematic indeterminacy. Let n= Dki=DOF
2. Assign the co-ordinate numbers to the unknown displacements.
3. Impose the restraints in the co-ordinate directions to get the fully restrained
structure.
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 2
4. Determine the forces developed due to loads on members in each of the co-
ordinate directions in the fully restrained structure. These forces are noted in
{ADL}.
5. Determine the stiffness matrix [S] by giving unit displacement to the
restrained structure in each of the co-ordinate direction and find forces
developed in all co-ordinate directions.
6. Observing the final forces in various co-ordinate directions, note down the
final forces {AD}.
7. Equilibrium equation       D DLA A S D 
where
 DA =Action corresponding to unknown displacements in the original
structure
 DLA =Action corresponding to unknown displacements in the restrained
structure (If sinking is given, add sinking moments also in this vector)
 S = Stiffness matrix
 D =Vector of unknown displacements
Example 4.1: Analyse the beam as shown in figure using stiffness matrix method.
Take EI = constant.
Solution:
I) Dki=02 ( B C,  )
Note: 1) Action corresponding to translation is reaction
2) Action corresponding to rotation is moment
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 3
II)  
0
0
B
D
C
A


 
  
 
(No moments acting at joint B and joint C)
III) Restrained Structure
 
75 50 25
50 50
B
DL
C
A


     
    
    
(Values of moments at B and C)
IV) Derivation of Stiffness matrix
1BLet  
Moment at B = 1.33 EI + EI = 2.333 EI
Moment at C = 0.5 EI
1CLet  
Moment at B = 0.5 EI
Moment at C = 1.0 EI
 
1 1
2 333 0
K = EI
5
0 5 1 0
B C
B
C
. .
. .
 


 
 
 
 
V) Equation of Equilibrium
      D DLA A K D 
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 4
0 25 2 333 0 5
0 50 0 5 1 0
. .
. .


       
             
B
C
EI
B C
50
0 0 and
EI
.  
VI) Moment Calculations
      M ML MDA A A D 
75 0 67 0 75
75 1 33 0 0 751
50 1 0 0 5 50 75
50 0 5 1 0 0
AB
BA
BC
CB
M .
M .
EI
M . . EI
M . .
       
                        
       
            
Example 4.2: Analyse the beam using stiffness matrix method if support B sink by
25mm. Take EI = 3800 kN.m2
Solution:
I) Dki=02 ( B C,  )
II)  
0
0
B
D
C
A


 
  
 
(No moments acting at joint B and joint C)
III) Restrained Structure
Sinking Moments: Sinking is given in mm. Put this in m while calculating sinking
moments. Since both the element are having same length. Sinking moment of both
the elements will be same.
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 5
2 2
6 6 3800 0.025
Sinking moments 15.833 .
6
EI
kN m
L
  
  
 
30 26 67 15 833 15 833 3 333
13 38 15 833 29 213
B
DL
C
. . . .
A
. . .


       
    
     
IV) Derivation of Stiffness matrix
1BLet  
Moment at B = 0.67 EI + 0.67 EI = 1.333 EI
Moment at C = 0.33 EI
1CLet  
Moment at B = 0.33 EI
Moment at C = 0.67 EI
 
1 1
1 333 0 333
0 333 0
= EI
7
K
6
B C
B
C
. .
. .
 


 
 
 
 
V) Equation of Equilibrium
      D DLA A K D 
0 3 333 1 333 0 333
0 29 213 0 333 0 67
. . .
. . .


       
             
B
C
EI
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 6
B C
9 45 48 189
EI EI
. .
 

 
VI) Moment Calculations
      M ML MDA A A D 
30 15 833 0 33 0 42 714
75 15 833 0 67 0 9 45 20 4911
26 67 15 833 0 67 0 33 48 189 20 491
13 38 15 833 0 33 0 67 0
AB
BA
BC
CB
M . . .
M . . . .
EI
M . . . . . .EI
M . . . .
       
                          
        
             
Example 4.3: A continuous beam ABC is loaded as shown in fig. It has constant
flexural rigidity. Fixed support at A, roller support at B and guided support at C.
Analyze the beam using stiffness matrix method.
Solution:
I) Dki=02 ( B C,  )
II)  
0
0
B
D
C
A
 
  
 
(No moments acting at joint B and point load at C)
III) Restrained Structure
 
20
10
B
DL
C
Moment at B
A
Reaction at C
 
  
 
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 7
IV) Derivation of Stiffness matrix
1BLet  
Moment at B = 0.5 EI + 0.5 EI = 1.0 EI
Reaction at C = -0.09375 EI
1CLet  
Moment at B = -0.0937 EI
Reaction at C = 0.0234 EI
 
1 1
1 0 0 0937
0 0937 0 02
K =
4
EI
3
B C
B
C
. .
. .


  
 
   
V) Equation of Equilibrium
      D DLA A K D 
0 20 1 0 0 0937
0 10 0 0937 0 0234
. .
. .
        
              
B
C
EI
B C
32 078 555 8
and
EI EI
. .

 
  
VI) Moment Calculations
      M ML MDA A A D 
40 0 25 0 31 98
40 0 5 0 32 078 56 041
20 0 5 0 0937 555 8 56 04
20 0 25 0 0937 24 05
AB
BA
BC
CB
M . .
M . . .
EI
M . . . .EI
M . . .
       
                         
        
             
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 8
Example 4.4: Analyze the continuous beam using stiffness matrix method. Take
EI constant
Solution:
I) Dki=03 ( B C C, ,   )
(Clockwise moments acting at joint B, no moment and point load at C)
II)  
30
0
0
B
D C
C
A


 
 
  
  
III) Restrained Structure
 
20
0
0
B
DL C
C
Moment at B
A Moment at C
Reaction at C


 
 
  
  
IV) Derivation of Stiffness matrix
1BLet  
Moment at B = 1.0 EI + 2.0 EI = 3.0 EI
Moment at C = 1.0 EI
Reaction at C = -1.5 EI
1CLet  
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 9
Moment at B = 1.0 EI
Moment at C = 2.0 EI
Reaction at C = -1.5 EI
1CLet  
Moment at B = -1.5 EI
Moment at C = -1.5 EI
Reaction at C = 2.5 EI
 
3 0 1 0 1 5
K = EI 1 0 2 0 1 5
1 5 1 5 2
1
5
1 1B C C
B
C
C
. . .
. . .
. . .
 


 
 




  
 

V) Equation of Equilibrium
      D DLA A K D 
3 0 1 0 1 5
1 0 2
30 20
0 0 0 1 5
1 5 1 5 2 50 0
. . .
. . .
. . .


      
     
 
 
 
    
 

        
 
   
B
C
C
EI
B C C
4 782 2 608 0 434
and
EI EI EI
. . .
, 
 
   
VI) Moment Calculations
      M ML MDA A A D 
Note: Spring support is provided at support C, spring force developed due to
deformation of spring is added in the reaction at C
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 10
20 0 5 0 0 17 60
4 782
20 1 0 0 0 24 7821
0 434
0 2 0 1 0 1 5 5 218
2 608
0 1 0 2 0 1 5 0
AB
BA
BC
CB
M . .
.
M . .
EI .
M . . . .EI
.
M . . .
       
                          
                      
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 11
Example 4.5: Analyze the indeterminate beam as shown in figure using stiffness
matrix method. The beam is fixed at A, C and has internal hinge at B. Take EI
constant.
Solution:
I) Dki=03 ( B BA BC, ,  )
II)  
0
0
0
B
D BA
BC
A 

 
 
  
 
 
III) Restrained Structure
 
90
5
20
B
DL BA
BC
Reaction B
A Moment BA
Moment BC


 
 
  
 
 
IV) Derivation of Stiffness matrix
1BLet  
Reaction at B = 12 EI + 1.5 EI = 13.5 EI
Moment BA = -6.0 EI
Moment BC = 1.5 EI
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 12
1BALet  
Reaction at B = -6.0 EI
Moment BA = 4.0 EI
Moment BC = 0
1BCLet  
Reaction at B = 1.5 EI
Moment BA = 0
Moment BC = 2 EI
 
13 5 6 0 1 5
K = EI 6 0 4 0 0
1 5 0
1
0
1
2
1B BA BC
B
BA
BC
. . .
. .
. .
 


  
 
 






V) Equation of Equilibrium
      D DLA A K D 
13 5 6 0 1 5
6 0 4 0 0
1 5 0 2 0
0 90
0 5
0 20
. . .
. .
. .


    
     
       
     
   
 
 
 
 
B
BA
BC
EI
BA BC
20 28 75 5
and
EI EI EIB
.
,  
 
   
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 13
Exercise
Example: For the following beam, find the vertical deflection and rotation at joint
B using Stiffness Matrix Method. Take EI = 12×103
kN.m2
Example: Determine the unknown joint displacements of the beam as shown in
figure using Stiffness Matrix Method. Take EI constant.
Example: Analyse the beam using Stiffness Matrix Method if support B is sink by
25mm. Take EI = 3800 kN.m2
Example: A continuous beam has fixed support at node 1 and roller supports at
nodes 2 and 3. Analyse the beam using Stiffness Matrix Method and draw SFD and
BMD. Take E = 200 GPa and I=4×106
mm4
.
Example: Analyze the continuous beam ABC as shown in Figure using Stiffness
Matrix Method. Take EI constant.
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 14
Example: Analyse the prismatic beam ABC loaded and supported as shown in
Figure using finite element approach. Support B is sink by 25 mm. Draw SFD and
BMD. Take EI constant.
Example: Determine support reactions of continuous beam ABC if support B sink
by 10 mm. Take EI = 6000 kN.m2
. Use Stiffness Matrix Method.
Example: Determine support reactions of continuous beam ABC as shown in
Figure 1 if support B sink by 10 mm. Take EI = 6000 kN.m2
. Use Stiffness
Matrix Method.
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 15
Stiffness Matrix Method for portal frame
 The plane frame is a combination of plane truss and beam. All members are
connected by rigid joints in case of frame.
 A frame is having three degrees of freedom at each node i.e. displacement in
x-direction, displacement in y-direction and rotation. Therefore the size of
stiffness matrix of frame element is 6 6 .
Example 4.6: Analyze the portal frame as shown in figure using Stiffness Matrix
Method. Take EI constant.
Solution:
I) Dki=03 ( B C, ,  )
II)  
0
0
0
B
D CA


 
 
  
   
(No moments and horizontal force acting at joint B and C)
III) Restrained Structure
10.4 Moment at B
{ } 1.6 Moment at C
4.72 Sum of Horizontal Reaction at B and C
B
DL CA


 
 
  
   
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 16
IV) Derivation of Stiffness matrix
1BLet   1CLet  
Moment at B = 1.6EI + 4.0EI = 5.6 EI Moment at B = 2.0 EI
Moment at C = 2.0 EI Moment at C = 4.0EI+0.8EI=4.8EI
Reaction at B = 0.24 EI Reaction at C = 0.24 EI
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 17
1Let  
Moment at B = 0.24 EI
Moment at C = 0.24 EI
Reaction at B+C=0.048EI+0.096EI=0.144EI
 
5 6 2 0 0 24
K = EI 2 0 4 8 0 24
0 24 0 24 0 144
1 1 1B C
B
C
. . .
. . .
. . .
 


 
 
 
  


 
V) Equation of Equilibrium
      D DLA A K D 
5 6 2 0 0 20 10 4
0 1 6
0 4
4
2 0 4 8 0 24
0 24 0 24 0 42 47 1
B
C
. . .
EI .
.
. . .
.. . .


     
     
       
          
 
 

   

1.0419 1.803 34.046
; ;B Crad rad m
EI EI EI
     
VI) Moment Calculations
9 6 0 8 0 0 24 18 604
14 4 1 6 0 0 24 4 562
1 0419
4 4 2 0 4 5621
1 803
4 2 4 0 9 128
34 046
2 4 0 0 8 0 24 9 128
3 6 0 0 4 0 24 3 849
AB
BA
BC
CB
CD
DC
M . . . .
M . . . .
.
M .
EI .
M .EI
.
M . . . .
M . . . .
      
              
      
         
       
      
     
    



 

 
 
 
 
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 18
Example 4.7: Analyze the rigid frame by using Stiffness Matrix Method. Take EI
constant.
Solution:
I) Dki=03 ( B C, ,  )
II)  
0
0
50
B
D CA


 
 
  
   
(No moments acting at joint B and C, horizontal force at B)
III) Restrained Structure
75 Moment at B
{ } 75 Moment at C
0 Sum of Horizontal Reaction at B and C
B
DL CA


 
 
  
   
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 19
IV) Derivation of Stiffness matrix
1BLet   1CLet  
Moment at B = 2.0 EI Moment at B = 0.5 EI
Moment at C = 0.5 EI Moment at C = 2.0EI
Reaction at B = 0.375 EI Reaction at C = 0.375 EI
1Let  
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 20
Moment at B = 0.375 EI
Moment at C = 0.375 EI
Reaction at B+C=0.375EI
 
2 0 0 5 0 375
1 1
K = EI 0 5 2 0 0 375
0 375 0 375 0 37
1
5
B C
B
C
. . .
. . .
. . .
 


 
 
 
  
   

V) Equation of Equilibrium
      D DLA A K D 
2 0 0 5 0 375
0 5 2 0 0 375
0
0 75
3
0 75
50 0 75 0 375 0 375
B
C
. . .
EI . . .
. . .


     
     
       
   
 
 
 
 
      
VI) Moment Calculations
0 0 5 0 0 375 32 143
0 1 0 0 0 375 7 143
78 571
75 1 0 0 5 0 7 1431
21 428
75 0 5 1 0 0 92 857
190 476
0 0 0 5 0 375 92 857
0 0 1 0 0 375 8
AB
BA
BC
CB
CD
DC
M . . .
M . . .
.
M . . .
EI .
M . . .EI
.
M . . .
M . .
     
             
      
        
       
      
     
     2 143.
 
 
 
 
 
 
 
 
 
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 21
Example 7.8: Determine the rotation of joint B, and the horizontal displacements
of joints B and C. Take EI constant.
Solution:
I) Dki=03 ( B C, ,  )
II)  
0
0
0
B
D CA


 
 
  
   
(No moments acting at joint B and C, horizontal force at B)
III) Restrained Structure
13.33 Moment at B
{ } 40 Moment at C
40 Horizontal Reaction at B
B
DL CA


 
 
  
   
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 22
IV) Derivation of Stiffness matrix
1BLet  
1CLet  
1Let  
 
2 0 0 5 0 375
K = EI 0 5 1 0 0
0 375 0 0 187
1 1 1B C
B
C
. . .
. .
. .
 


 
 
 
 


  

SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 23
V) Equation of Equilibrium
      D DLA A K D 
2 0 0 5 0 375
0
0 13 33
0 40
0 40
5 1 0 0
0 375 0 0 187
B
C
. . .
EI .
.
.
. .


     
     
       
      
 
 
 
       
113.77 96.88 442.05
; ;B Crad rad m
EI EI EI
 

   
VI) Moment Calculations
26 67 0 5 0 0 375 135 55
113 77
26 67 1 0 0 0 375 25 331
96 88
40 1 0 0 5 0 25 33
442 05
40 0 5 1 0 0 0
AB
BA
BC
CB
M . . . .
.
M . . . .
EI .
M . . .EI
.
M . .
       
                         
         
             
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 24
Example 4.9: Analyze the rigid jointed portal frame shown in Figure using
Stiffness Matrix Method. Take EI constant.
Solution:
I) Dki=03 ( B C,  )
II)  
0
0
B
D
C
A


 
  
 
(No moments acting at joint B and C, horizontal force at B)
III) Restrained Structure
 
4 0 Moment at B
20 Moment at C
B
DL
C
.
A


 
  
 
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 25
IV) Derivation of Stiffness matrix
1BLet  
1CLet  
 
1 1
1 8 0 5
0 5 1 0
B C
B
C
. .
K EI
. .
 


 
 
  
 
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 26
V) Equation of Equilibrium
      D DLA A K D 
0 4 0 1 8 0 5
0 20 0 5 1 0
B
C
. . .
EI
. .


       
             
3.870 21.935
;B Crad rad
EI EI
 

 
VI) Moment Calculations
36 0 4 0 34 45
24 0 8 0 3 870 27 091
20 1 0 0 5 21 935 27 09
20 0 5 1 0 0
AB
BA
BC
CB
M . .
M . . .
EI
M . . . .EI
M . .
       
                         
       
            
Example 4.10: Determine global stiffness matrix of the frame ABC shown in
figure using Stiffness Matrix Method. Take EI constant. Neglect axial deformation.
Example 4.11: Analyse the frame shown in Figure using Stiffness Matrix Method
and draw bending moment diagram. Neglect axial deformation.
(Ans. B AB BA BC CB1.2/ EI, M 0.8kN.m,M 1.6kN.m, M 18.4kN.m, M 14.8kN.m      )
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 27
Example 4.12: Determine the unknown joint displacements of the portal frame as
shown in Figure using Stiffness Matrix Method. Take EI constant. Neglect axial
deformation.
Example 4.13: Analyse the portal frame as shown in Figure using Stiffness Matrix
Method. Neglect axial deformation.
Example 4.14: Determine the unknown joint displacements of the portal frame as
shown in Figure using Stiffness Matrix Method. Take EI constant. Neglect axial
deformation.
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 28
Example 4.15: Analyze the rigid jointed portal frame shown in Figure 6 using
Stiffness Matrix Method. Take EI constant. Draw BMD. Neglect axial
deformation.
Stiffness matrix method for analysis of trusses
The truss may be statically determinate or indeterminate. All members are
subjected to only direct stresses (tensile or compressive). Joint displacements are
selected as unknown variables. Here we select two noded bar element for the
formulation of stiffness matrix of truss element. Since the members are subjected
to only axial forces, the displacements are only in the axial directions of the
members. Therefore, the nodal displacement vector for the bar element is
  1
2
e
u'
x'
u'
 
  
 
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 29
where, 1 2and' '
u u are the displacements in axial direction of the element. The
stiffness matrix of a bar element is
1 2
1
2
1 1
1 1
'
u' u'
u'AE
K
u'L
 
       
Transformation matrix for the truss:
' 'x y = Local coordinate
systems
x, y = global coordinate
system
1 2u' ,u' = Displacements in
local coordinate system
1 1 2 2u , v ,u , v = Displacements
in global coordinate system
 =Angle measured in
anticlockwise sense w.r.t.
positive x-axis.
Since axial directions of all members of truss are not same, hence in global
coordinate system (x-y) there are two displacement components at every node.
Hence the nodal displacement vector for typical truss element is
 
1
1
2
2
e
u
v
x
u
v
 
 
 
  
 
  
Refereeing above figure,
At Node 1, At Node 2,
1 1 1cos sin'
u u v   2 2 2cos sin'
u u v  
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 30
Therefore, in matrix form above relation are
1
11
22
2
cos sin 0 0
0 0 cos sin
'
'
u
vu
uu
v
 
 
 
     
    
    
  
    '
e
x L x
where,
 '
e
x = vector of local unknowns
 x = vector of global unknowns
 L = Transformation matrix =  
0 0
0 0
l m
L
l m
 
  
 
where, 2 1 2 1
cos or sin or
x x y y
l l m m
L L
 
 
   
Stiffness matrix of truss element in global coordinate system
      '
T
K L K L
 
0
0 1 1 0 0
0 1 1 0 0
0
l
m l mAE
K
l l mL
m
 
            
 
 
 
0
0
0
0
l
m l m l mAE
K
l l m l mL
m
 
           
 
 
 
1 1 2 2
2 2
1
2 2
1
2 2
2
2 2
2
u v u v
ul lm l lm
vlm m lm mAE
K
uL l lm l lm
vlm m lm m
  
 
  
  
 
  
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 31
Example 1: Analyze the truss as shown in figure. Cross-sectional area of members
are AB=1000 mm2
, BC=800 mm2
, CA= 800 mm2
. Take E = 2 × 105
MPa
Solution: Step 1: Degrees of freedom: 06 ( A A B B c cu ,v ,u ,v ,u ,v )
Assume x-axis horizontal through point c and vertical through point A. The
coordinate of node A(0, 1.5), B(4, 1.5) and C (2, 0). Take E in GPa
Member x2-x1 y2-y1 L l m AE/L (kN/mm) B.C.
AB 4 0 4 1 0 50 uA = 0Av 
BC -2 -1.5 2.5 -0.8 -0.6 64 0Bv 
CA -2 1.5 2.5 -0.8 0.6 64 ---
Step 2: Element stiffness matrices
Stiffness matrix of element AB: Stiffness matrix of element BC:
 
1 0 1 0
0 0 0 0
50
1 0 1 0
0 0 0 0
A A B B
A
A
AB
B
B
u v u v
u
v
K
u
v
 
 
 
 
 
 
 
0 64 0 48 0 64 0 48
0 48 0 36 0 48 0 36
64
0 64 0 48 0 64 0 48
0 48 0 36 0 48 0 36
B B c c
B
B
BC
c
c
u v u v
u. . . .
v. . . .
K
u. . . .
v. . . .
  
  
 
  
 
  
Stiffness matrix of element CA:
 
0 64 0 48 0 64 0 48
0 48 0 36 0 48 0 36
64
0 64 0 48 0 64 0 48
0 48 0 36 0 48 0 36
c c A A
c
c
CA
A
A
u v u v
u. . . .
v. . . .
K
u. . . .
v. . . .
  
  
 
  
 
  
Step 3: Global stiffness matrix (Total DOF are 06, size of stiffness matrix 6×6)
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 32
 
90 96 30 72 50 0 40 96 30 72
30 72 23 04 0 0 30 72 23 04
50 0 90 96 30 72 40 96 30 72
0 0 30 72 23 04 30 72 23 04
40 96 30 72 40 96 30 72 81 92 0
30 72 23 04 30 72 23 04 0 46 08
A A B B c c
A
A
B
B
c
u v u v u v
u. . . .
v. . . .
u. . . .
K
v. . . .
u. . . . .
. . . . .
   
  
 
   
  
  
   
 
    cv



  
Step 4: Reduced stiffness matrix (Since uA= 0Av  , 0Bv  eliminate corresponding
rows and columns from global stiffness matrix)
 
90 96 40 96 30 72
40 96 81 9 0
30 72 0 46 08
B c c
B
c
c
u u v
. . . u
K . . u
. . v
  
  
 
  
Step 5: Equation of equilibrium
    K f 
90 96 40 96 30 72 0
40 96 81 9 0 0
30 72 0 46 08 120
B
c
c
. . . u
. . u
. . v
      
         
         
1 6 0 8 3 67B c cu . mm, u . mm, v . mm     
Example 2: Figure shows a plane truss with three members. Cross-sectional area
of all members 800 mm2
Young modulus is 200 KN/mm2
. Determine
deflection at loaded joint.
Solution:
Step 1: Degrees of freedom: 08 ( A A B B c c D Du ,v ,u ,v ,u ,v ,u ,v )
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 33
Assume origin support A (0, 0). The coordinates of other nodes B (1000, 0),
C(2000, 0) and D(1500, 1000)
Member x2-x1 y2-y1 L l m AE/L (kN/mm) B.C.
AD 1500 1000 1802.8 0.832 0.555 88.75 0A Au v 
BD 500 1000 1118 0.447 0.894 143.112 0B Bu v 
CD -500 1000 1118 -0.447 0.894 143.112 0c cu v 
Step 2: Element stiffness matrices
Stiffness matrix of element AD:
 
61 43 40 98 61 43 40 98
40 98 27 34 40 98 27 34
61 43 40 98 61 43 40 98
40 98 27 34 40 98 27 34
A A D D
A
A
AD
D
D
u v u v
u. . . .
v. . . .
K
u. . . .
v. . . .
   
   
 
  
 
  
 
( 0A Au v  )
Stiffness matrix of element BD:
 
28 59 57 19 28 59 57 19
57 19 114 38 57 19 114 38
28 59 57 19 28 59 57 19
57 19 114 38 57 19 114 38
B B D D
B
B
BD
D
D
u v u v
u. . . .
v. . . .
K
u. . . .
v. . . .
   
   
 
  
 
  
 
( 0B Bu v  )
Stiffness matrix of element CD:
 
28 59 57 19 28 59 57 19
57 19 114 38 57 19 114 38
28 59 57 19 28 59 57 19
57 19 114 38 57 19 114 38
C C D D
C
C
CD
D
D
u v u v
u. . . .
v. . . .
K
u. . . .
v. . . .
   
   
 
  
 
  
 
( 0c cu v  )
Step 3: Reduced stiffness matrix
 
118 61 40 98
40 98 256 10
D D
D
D
u v
u. .
K
v. .
 
  
 
Step 5: Equation of equilibrium
    K f 
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 34
118 61 40 98 200
40 98 256 10 0
D
D
u. .
v. .
    
    
    
1 785 0 286D Du . mm, v . mm  
Example 3: for the truss as shown in figure using stiffness matrix method,
determines deflections at loaded joints. The joint B is subjected to 50 kN
horizontal force towards left and 80 kN force vertically downward. Take cross-
sectional area of all members 1000 mm2
Young modulus is 200 GPa.
Solution: Step 1: Degrees of freedom: 06 ( A A B B c c D Du ,v ,u ,v ,u ,v ,u ,v ). Assume
origin point B. The coordinates of points areA (-4, 3), B (0,0), C (4,-3), D (-4, -3)
Member x2-x1 y2-y1 L l m AE/L (kN/mm) B.C.
AB 4000 -3000 5000 0.8 -0.6 40 0A Au v 
DB 4000 -3000 5000 0.8 -0.6 40 0D Du v 
CB -4000 -3000 5000 -0.8 -0.6 40 0c cu v 
Step 2: Stiffness matrix of element AB:
 
0 64 0 48 0 64 0 48
0 48 0 36 0 48 0 36
40
0 64 0 48 0 64 0 48
0 48 0 36 0 48 0 36
A A B B
A
A
AB
B
B
u v u v
u. . . .
v. . . .
K
u. . . .
v. . . .
   
   
 
  
 
  
 
( 0A Au v  )
Stiffness matrix of element DB:
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 35
 
0 64 0 48 0 64 0 48
0 48 0 36 0 48 0 36
40
0 64 0 48 0 64 0 48
0 48 0 36 0 48 0 36
D D B B
D
D
DB
B
B
u v u v
u. . . .
v. . . .
K
u. . . .
v. . . .
   
   
 
  
 
  
 
( 0D Du v  )
Stiffness matrix of element CB:
 
0 64 0 48 0 64 0 48
0 48 0 36 0 48 0 36
40
0 64 0 48 0 64 0 48
0 48 0 36 0 48 0 36
C C B B
C
C
CB
B
B
u v u v
u. . . .
v. . . .
K
u. . . .
v. . . .
   
   
 
  
 
  
 
( 0c cu v  )
Step 3: Reduced stiffness matrix
 
1 92 0 48
40
0 48 1 08
B B
B
B
u v
u. .
K
v. .
 
   
Step 4: Equation of equilibrium
    K f 
1 92 0 48 50
40
0 48 1 08 80
B
B
u. .
v. .
     
         
0 00125 0 0024B Bu . mm, v . mm   
Example 3: Determine the deflections at loaded joint in two bar truss supported by
spring as shown in figure. Bar one has length of 5m and bar two a length of 10m.
The stiffness of spring is 2000 kN/m. Take A = 5×10-4
m2
and E = 200 GPa.
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 36
Solution:
Step 1: Degrees of freedom: 06 ( 1 1 2 2 3 3u ,v ,u ,v ,u ,v )
Take origin node 1. The coordinates of nodes are
1(0, 0), 2(-3.535, 3.535), 3(-10, 0)
Member x2-x1 y2-y1 L l m AE/L (kN/mm) B.C.
1-2 -3.535 3.535 5 0.707 -0.707 200×102
2 2 0u v 
1-3 -10 0 10 -1 0 100×102
3 3 0u v 
1-4 --- --- --- --- --- --- ---
Step 2: Stiffness matrix of element 1-2:
 
1 1 2 2
1
12
1 2
2
2
0 5 0 5 0 5 0 5
0 5 0 5 0 5 0 5
200 10
0 5 0 5 0 5 0 5
0 5 0 5 0 5 0 5
u v u v
u. . . .
v. . . .
K
u. . . .
v. . . .

  
  
  
   
 
   
 
( 2 2 0u v  )
Stiffness matrix of element 1-3:
 
1 1 3 3
1
12
1 3
3
3
1 0 1 0
0 0 0 0
100 10
1 0 1 0
0 0 0 0
u v u v
u
v
K
u
v

 
 
  
  
 
 
 
( 3 3 0u v  )
Stiffness matrix of Spring element
 
1 4
1
3
4
1 1
2000
1 1
v v
v
K
v
 
    

Step 3: Reduced stiffness matrix
 
1 1
1
1
20000 10000
10000 12000
u v
u
K
v
 
   
Step 4: Equation of equilibrium:     K f 
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 37
1
1
20000 10000 0
10000 12000 40
u
v
     
         
1 12 857 5 714u . mm, v . mm   
Example: For the plane truss shown in figure, determine the x and y components
of displacements at node 1. Take E = 70 GPa and A = 500 mm2
for all elements.
Length of member 1-3 is 2500mm.
Example: For the plane truss composed of three elements shown in figure
subjected to a downward force of 50 kN applied at node 1, determine the x and y
components of displacements at node 1. Take E = 200 GPa and A = 1000 mm2
for
all elements.
Example: Figure shows a plane truss with two members. Both the members are of
cross-sectional area 70.71 mm2
. Young’s modulus is 200 kN/mm2
. Determine
deflections of loaded joint and hence the member forces.
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 38
Example: A steel truss as shown in figure. The modulus of elasticity is 210 GPa.
The cross sectional area of member AB is 300 mm2
, BC is 400 mm2
and AC is 500
mm2
. Calculate the horizontal and vertical displacements at point ‘A’ using
stiffness matrix method.
Example: Figure shows a plane truss with three members. All members are of
length 1000 mm and cross-sectional area 600 mm2
. Young’s modulus is 150
kN/mm2
. Determine unknown joint displacements of the truss.
Example: For the two bar truss shown in figure determine the displacements at the
loaded joint using stiffness matrix method. Take A = 200 mm2
and E = 70
GPa.
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 39
Example: Find the vertical and horizontal deflection at point C for the two
member truss as shown in figure. Area of inclined member is 2000 mm2
whereas horizontal member is 1600 mm2
. Take E = 200 GPa
Example: Figure shows plane truss with three members. All members are of
length 1000mm and c/s area 600mm2. E=150 KN/mm2. Determine forces in
members of truss using stiffness matrix method.
Example: Analyze the two member truss shown in figure using stiffness matrix
method. Take c/s area of each member 1000 mm2
and E = 200 GPa. The length
of each member is 5m.
SRES’s Sanjivani College of Engineering, Kopargaon
Structural Analysis-II, Prepared by Prof. Jape A. S. Page 40
Example: For the plane truss structure shown in figure, determine the
displacements at the loaded joint using stiffness matrix method. Assume A =
2000 mm2
and E = 200 GPa.

More Related Content

What's hot

CE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsCE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsFawad Najam
 
Plastic Analysis
Plastic AnalysisPlastic Analysis
Plastic AnalysisAayushi5
 
Analysis of sway type portal frame using direct stiffness method
Analysis of sway type portal frame using direct stiffness methodAnalysis of sway type portal frame using direct stiffness method
Analysis of sway type portal frame using direct stiffness methodkasirekha
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Muhammad Irfan
 
Matrix stiffness method 0910
Matrix stiffness method 0910Matrix stiffness method 0910
Matrix stiffness method 0910mullerasmare
 
Machine Foundation Design - An Introduction
Machine Foundation Design - An IntroductionMachine Foundation Design - An Introduction
Machine Foundation Design - An IntroductionLawrence Galvez
 
Portal and cantilever method
Portal and cantilever methodPortal and cantilever method
Portal and cantilever methodPrionath Roy
 
Module2 stiffness- rajesh sir
Module2 stiffness- rajesh sirModule2 stiffness- rajesh sir
Module2 stiffness- rajesh sirSHAMJITH KM
 
Module1 flexibility-1- rajesh sir
Module1 flexibility-1- rajesh sirModule1 flexibility-1- rajesh sir
Module1 flexibility-1- rajesh sirSHAMJITH KM
 
1.1 static and kinematic indeterminacy
1.1 static and kinematic indeterminacy1.1 static and kinematic indeterminacy
1.1 static and kinematic indeterminacyNilesh Baglekar
 
Stiffness method of structural analysis
Stiffness method of structural analysisStiffness method of structural analysis
Stiffness method of structural analysisKaran Patel
 
Influence lines for_indeterminate_beams_and_frames
Influence lines for_indeterminate_beams_and_framesInfluence lines for_indeterminate_beams_and_frames
Influence lines for_indeterminate_beams_and_framesTanmoy Sinha
 
Uniaxial Column Design
Uniaxial Column DesignUniaxial Column Design
Uniaxial Column DesignIkhtiar Khan
 
Shear Strength of Soil
Shear Strength of SoilShear Strength of Soil
Shear Strength of SoilUmang Parmar
 
Portal and Cantilever Beam Method
Portal and Cantilever Beam MethodPortal and Cantilever Beam Method
Portal and Cantilever Beam Methodmisschand
 
CE 72.32 (January 2016 Semester) Lecture 2 - Design Philosophy
CE 72.32 (January 2016 Semester) Lecture 2 - Design PhilosophyCE 72.32 (January 2016 Semester) Lecture 2 - Design Philosophy
CE 72.32 (January 2016 Semester) Lecture 2 - Design PhilosophyFawad Najam
 
Module 1 Behaviour of RC beams in Shear and Torsion
Module 1   Behaviour of RC beams in Shear and TorsionModule 1   Behaviour of RC beams in Shear and Torsion
Module 1 Behaviour of RC beams in Shear and TorsionVVIETCIVIL
 

What's hot (20)

CE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsCE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie Models
 
Plastic Analysis
Plastic AnalysisPlastic Analysis
Plastic Analysis
 
Analysis of sway type portal frame using direct stiffness method
Analysis of sway type portal frame using direct stiffness methodAnalysis of sway type portal frame using direct stiffness method
Analysis of sway type portal frame using direct stiffness method
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
 
Matrix stiffness method 0910
Matrix stiffness method 0910Matrix stiffness method 0910
Matrix stiffness method 0910
 
Machine Foundation Design - An Introduction
Machine Foundation Design - An IntroductionMachine Foundation Design - An Introduction
Machine Foundation Design - An Introduction
 
Portal and cantilever method
Portal and cantilever methodPortal and cantilever method
Portal and cantilever method
 
Matrix methods
Matrix methodsMatrix methods
Matrix methods
 
Module2 stiffness- rajesh sir
Module2 stiffness- rajesh sirModule2 stiffness- rajesh sir
Module2 stiffness- rajesh sir
 
Module1 flexibility-1- rajesh sir
Module1 flexibility-1- rajesh sirModule1 flexibility-1- rajesh sir
Module1 flexibility-1- rajesh sir
 
1.1 static and kinematic indeterminacy
1.1 static and kinematic indeterminacy1.1 static and kinematic indeterminacy
1.1 static and kinematic indeterminacy
 
Stiffness method of structural analysis
Stiffness method of structural analysisStiffness method of structural analysis
Stiffness method of structural analysis
 
Influence lines for_indeterminate_beams_and_frames
Influence lines for_indeterminate_beams_and_framesInfluence lines for_indeterminate_beams_and_frames
Influence lines for_indeterminate_beams_and_frames
 
Stiffness Matrix
Stiffness MatrixStiffness Matrix
Stiffness Matrix
 
Uniaxial Column Design
Uniaxial Column DesignUniaxial Column Design
Uniaxial Column Design
 
Shear Strength of Soil
Shear Strength of SoilShear Strength of Soil
Shear Strength of Soil
 
Portal and Cantilever Beam Method
Portal and Cantilever Beam MethodPortal and Cantilever Beam Method
Portal and Cantilever Beam Method
 
CE 72.32 (January 2016 Semester) Lecture 2 - Design Philosophy
CE 72.32 (January 2016 Semester) Lecture 2 - Design PhilosophyCE 72.32 (January 2016 Semester) Lecture 2 - Design Philosophy
CE 72.32 (January 2016 Semester) Lecture 2 - Design Philosophy
 
Strut and Tie Model for Pile Cap
Strut and Tie Model for Pile CapStrut and Tie Model for Pile Cap
Strut and Tie Model for Pile Cap
 
Module 1 Behaviour of RC beams in Shear and Torsion
Module 1   Behaviour of RC beams in Shear and TorsionModule 1   Behaviour of RC beams in Shear and Torsion
Module 1 Behaviour of RC beams in Shear and Torsion
 

Similar to Unit 4 stiffness-anujajape

Top schools in delhi ncr
Top schools in delhi ncrTop schools in delhi ncr
Top schools in delhi ncrEdhole.com
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in indiaEdhole.com
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution MethodBhavik A Shah
 
L15: Analysis of Indeterminate Beams by Slope Deflection Method
L15: Analysis of Indeterminate Beams by Slope Deflection Method L15: Analysis of Indeterminate Beams by Slope Deflection Method
L15: Analysis of Indeterminate Beams by Slope Deflection Method Dr. OmPrakash
 
L18 analysis of indeterminate beams by moment distribution method
L18 analysis of indeterminate beams by moment distribution methodL18 analysis of indeterminate beams by moment distribution method
L18 analysis of indeterminate beams by moment distribution methodDr. OmPrakash
 
Admission in india 2014
Admission in india 2014Admission in india 2014
Admission in india 2014Edhole.com
 
L15 analysis of indeterminate beams by moment distribution method
L15 analysis of indeterminate beams by moment distribution methodL15 analysis of indeterminate beams by moment distribution method
L15 analysis of indeterminate beams by moment distribution methodDr. OmPrakash
 
17422 theory of structures
17422   theory of structures17422   theory of structures
17422 theory of structuressoni_nits
 
9789810682460 sm 05
9789810682460 sm 059789810682460 sm 05
9789810682460 sm 05aryaanuj1
 
structure analysiics
structure analysiicsstructure analysiics
structure analysiicsakshay garg
 
Deformation of structures
Deformation of structuresDeformation of structures
Deformation of structuresAhmed zubydan
 
Three.hinged.arch
Three.hinged.archThree.hinged.arch
Three.hinged.archengr jafar
 
Strength of materials_by_r_s_khurmi-601-700
Strength of materials_by_r_s_khurmi-601-700Strength of materials_by_r_s_khurmi-601-700
Strength of materials_by_r_s_khurmi-601-700kkkgn007
 
Top school in delhi ncr
Top school in delhi ncrTop school in delhi ncr
Top school in delhi ncrEdhole.com
 
Video lectures for mca
Video lectures for mcaVideo lectures for mca
Video lectures for mcaEdhole.com
 
Dynamics Instantaneous center of zero velocity
Dynamics Instantaneous center of zero velocityDynamics Instantaneous center of zero velocity
Dynamics Instantaneous center of zero velocityNikolai Priezjev
 

Similar to Unit 4 stiffness-anujajape (20)

Top schools in delhi ncr
Top schools in delhi ncrTop schools in delhi ncr
Top schools in delhi ncr
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in india
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution Method
 
L15: Analysis of Indeterminate Beams by Slope Deflection Method
L15: Analysis of Indeterminate Beams by Slope Deflection Method L15: Analysis of Indeterminate Beams by Slope Deflection Method
L15: Analysis of Indeterminate Beams by Slope Deflection Method
 
L18 analysis of indeterminate beams by moment distribution method
L18 analysis of indeterminate beams by moment distribution methodL18 analysis of indeterminate beams by moment distribution method
L18 analysis of indeterminate beams by moment distribution method
 
Admission in india 2014
Admission in india 2014Admission in india 2014
Admission in india 2014
 
M6l36
M6l36M6l36
M6l36
 
L15 analysis of indeterminate beams by moment distribution method
L15 analysis of indeterminate beams by moment distribution methodL15 analysis of indeterminate beams by moment distribution method
L15 analysis of indeterminate beams by moment distribution method
 
17422 theory of structures
17422   theory of structures17422   theory of structures
17422 theory of structures
 
9789810682460 sm 05
9789810682460 sm 059789810682460 sm 05
9789810682460 sm 05
 
4 2
4 24 2
4 2
 
structure analysiics
structure analysiicsstructure analysiics
structure analysiics
 
4 2(1)
4 2(1)4 2(1)
4 2(1)
 
Deformation of structures
Deformation of structuresDeformation of structures
Deformation of structures
 
Three.hinged.arch
Three.hinged.archThree.hinged.arch
Three.hinged.arch
 
Strength of materials_by_r_s_khurmi-601-700
Strength of materials_by_r_s_khurmi-601-700Strength of materials_by_r_s_khurmi-601-700
Strength of materials_by_r_s_khurmi-601-700
 
Top school in delhi ncr
Top school in delhi ncrTop school in delhi ncr
Top school in delhi ncr
 
Kuiz 1 & 2
Kuiz 1 & 2Kuiz 1 & 2
Kuiz 1 & 2
 
Video lectures for mca
Video lectures for mcaVideo lectures for mca
Video lectures for mca
 
Dynamics Instantaneous center of zero velocity
Dynamics Instantaneous center of zero velocityDynamics Instantaneous center of zero velocity
Dynamics Instantaneous center of zero velocity
 

More from anujajape

Bending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdf
Bending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdfBending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdf
Bending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdfanujajape
 
Stiffness matrix method of indeterminate Beam5
Stiffness matrix method of indeterminate Beam5Stiffness matrix method of indeterminate Beam5
Stiffness matrix method of indeterminate Beam5anujajape
 
Stiffness matrix method of indeterminate Beam4
Stiffness matrix method of indeterminate Beam4Stiffness matrix method of indeterminate Beam4
Stiffness matrix method of indeterminate Beam4anujajape
 
Stiffness matrix method of indeterminate Beam3
Stiffness matrix method of indeterminate Beam3Stiffness matrix method of indeterminate Beam3
Stiffness matrix method of indeterminate Beam3anujajape
 
Stiffness matrix method of indeterminate Beam2
Stiffness matrix method of indeterminate Beam2Stiffness matrix method of indeterminate Beam2
Stiffness matrix method of indeterminate Beam2anujajape
 
Stiffness matrix method of indeterminate beam-1
Stiffness matrix method of indeterminate beam-1Stiffness matrix method of indeterminate beam-1
Stiffness matrix method of indeterminate beam-1anujajape
 
Beam Analysis using Finite Element Method by anujajape
Beam Analysis using Finite Element Method by anujajapeBeam Analysis using Finite Element Method by anujajape
Beam Analysis using Finite Element Method by anujajapeanujajape
 
Truss Analysis using Finite Element method ppt
Truss Analysis using Finite Element method pptTruss Analysis using Finite Element method ppt
Truss Analysis using Finite Element method pptanujajape
 
Finite element analysis of Continuous beam
Finite element analysis of Continuous beamFinite element analysis of Continuous beam
Finite element analysis of Continuous beamanujajape
 
Finite element analysis of truss
Finite element analysis of trussFinite element analysis of truss
Finite element analysis of trussanujajape
 
Finite element analysis of spring assembly
Finite element analysis of spring assembly Finite element analysis of spring assembly
Finite element analysis of spring assembly anujajape
 
Finite Element analysis of Spring Assembly
Finite Element analysis of Spring AssemblyFinite Element analysis of Spring Assembly
Finite Element analysis of Spring Assemblyanujajape
 

More from anujajape (12)

Bending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdf
Bending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdfBending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdf
Bending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdf
 
Stiffness matrix method of indeterminate Beam5
Stiffness matrix method of indeterminate Beam5Stiffness matrix method of indeterminate Beam5
Stiffness matrix method of indeterminate Beam5
 
Stiffness matrix method of indeterminate Beam4
Stiffness matrix method of indeterminate Beam4Stiffness matrix method of indeterminate Beam4
Stiffness matrix method of indeterminate Beam4
 
Stiffness matrix method of indeterminate Beam3
Stiffness matrix method of indeterminate Beam3Stiffness matrix method of indeterminate Beam3
Stiffness matrix method of indeterminate Beam3
 
Stiffness matrix method of indeterminate Beam2
Stiffness matrix method of indeterminate Beam2Stiffness matrix method of indeterminate Beam2
Stiffness matrix method of indeterminate Beam2
 
Stiffness matrix method of indeterminate beam-1
Stiffness matrix method of indeterminate beam-1Stiffness matrix method of indeterminate beam-1
Stiffness matrix method of indeterminate beam-1
 
Beam Analysis using Finite Element Method by anujajape
Beam Analysis using Finite Element Method by anujajapeBeam Analysis using Finite Element Method by anujajape
Beam Analysis using Finite Element Method by anujajape
 
Truss Analysis using Finite Element method ppt
Truss Analysis using Finite Element method pptTruss Analysis using Finite Element method ppt
Truss Analysis using Finite Element method ppt
 
Finite element analysis of Continuous beam
Finite element analysis of Continuous beamFinite element analysis of Continuous beam
Finite element analysis of Continuous beam
 
Finite element analysis of truss
Finite element analysis of trussFinite element analysis of truss
Finite element analysis of truss
 
Finite element analysis of spring assembly
Finite element analysis of spring assembly Finite element analysis of spring assembly
Finite element analysis of spring assembly
 
Finite Element analysis of Spring Assembly
Finite Element analysis of Spring AssemblyFinite Element analysis of Spring Assembly
Finite Element analysis of Spring Assembly
 

Recently uploaded

chpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMM
chpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMMchpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMM
chpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMMNanaAgyeman13
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmDeepika Walanjkar
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfalene1
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
Risk Management in Engineering Construction Project
Risk Management in Engineering Construction ProjectRisk Management in Engineering Construction Project
Risk Management in Engineering Construction ProjectErbil Polytechnic University
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Romil Mishra
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodManicka Mamallan Andavar
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdfAkritiPradhan2
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfDrew Moseley
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsResearcher Researcher
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfBalamuruganV28
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdfCaalaaAbdulkerim
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdfsahilsajad201
 
OOP concepts -in-Python programming language
OOP concepts -in-Python programming languageOOP concepts -in-Python programming language
OOP concepts -in-Python programming languageSmritiSharma901052
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 

Recently uploaded (20)

chpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMM
chpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMMchpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMM
chpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMM
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
Risk Management in Engineering Construction Project
Risk Management in Engineering Construction ProjectRisk Management in Engineering Construction Project
Risk Management in Engineering Construction Project
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument method
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdf
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending Actuators
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdf
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdf
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdf
 
OOP concepts -in-Python programming language
OOP concepts -in-Python programming languageOOP concepts -in-Python programming language
OOP concepts -in-Python programming language
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 

Unit 4 stiffness-anujajape

  • 1. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 1 Stiffness Matrix Method a) Fundamental concepts of stiffness method of analysis, formulation of stiffness matrix, application to trusses by member approach. Application to beams by structure approach only, (Involving not more than three unknowns). b) Application to rigid jointed rectangular portal frames by structure approach only (Involving not more than three unknowns). Introduction_______________________________________________________ There are several methods available in the literature for the analysis of continuous beams such as slope deflection method, moment distribution method, flexibility matrix method, stiffness matrix method, three moment theorem etc. However among all these methods Stiffness Matrix Method is program oriented method. In this method, the given indeterminate structure is first made kinematically determinate by introducing constraints at the nodes. The required number of constraints is equal to non-zero joint displacements is called as degrees of freedom or kinematic indeterminacy. Stiffness matrix method is advanced tool for analyzing determinate structures. This method is a matrix version of classical generalized slope-deflection method. Conditions of joint equilibrium are used to form equations in unknown displacements. Steps for the solution of Indeterminate Beams by Stiffness Method_________ 1. Determine the degree of kinematic indeterminacy. Let n= Dki=DOF 2. Assign the co-ordinate numbers to the unknown displacements. 3. Impose the restraints in the co-ordinate directions to get the fully restrained structure.
  • 2. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 2 4. Determine the forces developed due to loads on members in each of the co- ordinate directions in the fully restrained structure. These forces are noted in {ADL}. 5. Determine the stiffness matrix [S] by giving unit displacement to the restrained structure in each of the co-ordinate direction and find forces developed in all co-ordinate directions. 6. Observing the final forces in various co-ordinate directions, note down the final forces {AD}. 7. Equilibrium equation       D DLA A S D  where  DA =Action corresponding to unknown displacements in the original structure  DLA =Action corresponding to unknown displacements in the restrained structure (If sinking is given, add sinking moments also in this vector)  S = Stiffness matrix  D =Vector of unknown displacements Example 4.1: Analyse the beam as shown in figure using stiffness matrix method. Take EI = constant. Solution: I) Dki=02 ( B C,  ) Note: 1) Action corresponding to translation is reaction 2) Action corresponding to rotation is moment
  • 3. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 3 II)   0 0 B D C A          (No moments acting at joint B and joint C) III) Restrained Structure   75 50 25 50 50 B DL C A                   (Values of moments at B and C) IV) Derivation of Stiffness matrix 1BLet   Moment at B = 1.33 EI + EI = 2.333 EI Moment at C = 0.5 EI 1CLet   Moment at B = 0.5 EI Moment at C = 1.0 EI   1 1 2 333 0 K = EI 5 0 5 1 0 B C B C . . . .             V) Equation of Equilibrium       D DLA A K D 
  • 4. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 4 0 25 2 333 0 5 0 50 0 5 1 0 . . . .                         B C EI B C 50 0 0 and EI .   VI) Moment Calculations       M ML MDA A A D  75 0 67 0 75 75 1 33 0 0 751 50 1 0 0 5 50 75 50 0 5 1 0 0 AB BA BC CB M . M . EI M . . EI M . .                                                       Example 4.2: Analyse the beam using stiffness matrix method if support B sink by 25mm. Take EI = 3800 kN.m2 Solution: I) Dki=02 ( B C,  ) II)   0 0 B D C A          (No moments acting at joint B and joint C) III) Restrained Structure Sinking Moments: Sinking is given in mm. Put this in m while calculating sinking moments. Since both the element are having same length. Sinking moment of both the elements will be same.
  • 5. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 5 2 2 6 6 3800 0.025 Sinking moments 15.833 . 6 EI kN m L         30 26 67 15 833 15 833 3 333 13 38 15 833 29 213 B DL C . . . . A . . .                      IV) Derivation of Stiffness matrix 1BLet   Moment at B = 0.67 EI + 0.67 EI = 1.333 EI Moment at C = 0.33 EI 1CLet   Moment at B = 0.33 EI Moment at C = 0.67 EI   1 1 1 333 0 333 0 333 0 = EI 7 K 6 B C B C . . . .             V) Equation of Equilibrium       D DLA A K D  0 3 333 1 333 0 333 0 29 213 0 333 0 67 . . . . . .                         B C EI
  • 6. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 6 B C 9 45 48 189 EI EI . .      VI) Moment Calculations       M ML MDA A A D  30 15 833 0 33 0 42 714 75 15 833 0 67 0 9 45 20 4911 26 67 15 833 0 67 0 33 48 189 20 491 13 38 15 833 0 33 0 67 0 AB BA BC CB M . . . M . . . . EI M . . . . . .EI M . . . .                                                           Example 4.3: A continuous beam ABC is loaded as shown in fig. It has constant flexural rigidity. Fixed support at A, roller support at B and guided support at C. Analyze the beam using stiffness matrix method. Solution: I) Dki=02 ( B C,  ) II)   0 0 B D C A        (No moments acting at joint B and point load at C) III) Restrained Structure   20 10 B DL C Moment at B A Reaction at C       
  • 7. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 7 IV) Derivation of Stiffness matrix 1BLet   Moment at B = 0.5 EI + 0.5 EI = 1.0 EI Reaction at C = -0.09375 EI 1CLet   Moment at B = -0.0937 EI Reaction at C = 0.0234 EI   1 1 1 0 0 0937 0 0937 0 02 K = 4 EI 3 B C B C . . . .            V) Equation of Equilibrium       D DLA A K D  0 20 1 0 0 0937 0 10 0 0937 0 0234 . . . .                         B C EI B C 32 078 555 8 and EI EI . .       VI) Moment Calculations       M ML MDA A A D  40 0 25 0 31 98 40 0 5 0 32 078 56 041 20 0 5 0 0937 555 8 56 04 20 0 25 0 0937 24 05 AB BA BC CB M . . M . . . EI M . . . .EI M . . .                                                         
  • 8. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 8 Example 4.4: Analyze the continuous beam using stiffness matrix method. Take EI constant Solution: I) Dki=03 ( B C C, ,   ) (Clockwise moments acting at joint B, no moment and point load at C) II)   30 0 0 B D C C A             III) Restrained Structure   20 0 0 B DL C C Moment at B A Moment at C Reaction at C             IV) Derivation of Stiffness matrix 1BLet   Moment at B = 1.0 EI + 2.0 EI = 3.0 EI Moment at C = 1.0 EI Reaction at C = -1.5 EI 1CLet  
  • 9. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 9 Moment at B = 1.0 EI Moment at C = 2.0 EI Reaction at C = -1.5 EI 1CLet   Moment at B = -1.5 EI Moment at C = -1.5 EI Reaction at C = 2.5 EI   3 0 1 0 1 5 K = EI 1 0 2 0 1 5 1 5 1 5 2 1 5 1 1B C C B C C . . . . . . . . .                   V) Equation of Equilibrium       D DLA A K D  3 0 1 0 1 5 1 0 2 30 20 0 0 0 1 5 1 5 1 5 2 50 0 . . . . . . . . .                                             B C C EI B C C 4 782 2 608 0 434 and EI EI EI . . . ,        VI) Moment Calculations       M ML MDA A A D  Note: Spring support is provided at support C, spring force developed due to deformation of spring is added in the reaction at C
  • 10. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 10 20 0 5 0 0 17 60 4 782 20 1 0 0 0 24 7821 0 434 0 2 0 1 0 1 5 5 218 2 608 0 1 0 2 0 1 5 0 AB BA BC CB M . . . M . . EI . M . . . .EI . M . . .                                                          
  • 11. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 11 Example 4.5: Analyze the indeterminate beam as shown in figure using stiffness matrix method. The beam is fixed at A, C and has internal hinge at B. Take EI constant. Solution: I) Dki=03 ( B BA BC, ,  ) II)   0 0 0 B D BA BC A              III) Restrained Structure   90 5 20 B DL BA BC Reaction B A Moment BA Moment BC              IV) Derivation of Stiffness matrix 1BLet   Reaction at B = 12 EI + 1.5 EI = 13.5 EI Moment BA = -6.0 EI Moment BC = 1.5 EI
  • 12. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 12 1BALet   Reaction at B = -6.0 EI Moment BA = 4.0 EI Moment BC = 0 1BCLet   Reaction at B = 1.5 EI Moment BA = 0 Moment BC = 2 EI   13 5 6 0 1 5 K = EI 6 0 4 0 0 1 5 0 1 0 1 2 1B BA BC B BA BC . . . . . . .                  V) Equation of Equilibrium       D DLA A K D  13 5 6 0 1 5 6 0 4 0 0 1 5 0 2 0 0 90 0 5 0 20 . . . . . . .                                        B BA BC EI BA BC 20 28 75 5 and EI EI EIB . ,        
  • 13. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 13 Exercise Example: For the following beam, find the vertical deflection and rotation at joint B using Stiffness Matrix Method. Take EI = 12×103 kN.m2 Example: Determine the unknown joint displacements of the beam as shown in figure using Stiffness Matrix Method. Take EI constant. Example: Analyse the beam using Stiffness Matrix Method if support B is sink by 25mm. Take EI = 3800 kN.m2 Example: A continuous beam has fixed support at node 1 and roller supports at nodes 2 and 3. Analyse the beam using Stiffness Matrix Method and draw SFD and BMD. Take E = 200 GPa and I=4×106 mm4 . Example: Analyze the continuous beam ABC as shown in Figure using Stiffness Matrix Method. Take EI constant.
  • 14. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 14 Example: Analyse the prismatic beam ABC loaded and supported as shown in Figure using finite element approach. Support B is sink by 25 mm. Draw SFD and BMD. Take EI constant. Example: Determine support reactions of continuous beam ABC if support B sink by 10 mm. Take EI = 6000 kN.m2 . Use Stiffness Matrix Method. Example: Determine support reactions of continuous beam ABC as shown in Figure 1 if support B sink by 10 mm. Take EI = 6000 kN.m2 . Use Stiffness Matrix Method.
  • 15. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 15 Stiffness Matrix Method for portal frame  The plane frame is a combination of plane truss and beam. All members are connected by rigid joints in case of frame.  A frame is having three degrees of freedom at each node i.e. displacement in x-direction, displacement in y-direction and rotation. Therefore the size of stiffness matrix of frame element is 6 6 . Example 4.6: Analyze the portal frame as shown in figure using Stiffness Matrix Method. Take EI constant. Solution: I) Dki=03 ( B C, ,  ) II)   0 0 0 B D CA              (No moments and horizontal force acting at joint B and C) III) Restrained Structure 10.4 Moment at B { } 1.6 Moment at C 4.72 Sum of Horizontal Reaction at B and C B DL CA             
  • 16. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 16 IV) Derivation of Stiffness matrix 1BLet   1CLet   Moment at B = 1.6EI + 4.0EI = 5.6 EI Moment at B = 2.0 EI Moment at C = 2.0 EI Moment at C = 4.0EI+0.8EI=4.8EI Reaction at B = 0.24 EI Reaction at C = 0.24 EI
  • 17. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 17 1Let   Moment at B = 0.24 EI Moment at C = 0.24 EI Reaction at B+C=0.048EI+0.096EI=0.144EI   5 6 2 0 0 24 K = EI 2 0 4 8 0 24 0 24 0 24 0 144 1 1 1B C B C . . . . . . . . .                  V) Equation of Equilibrium       D DLA A K D  5 6 2 0 0 20 10 4 0 1 6 0 4 4 2 0 4 8 0 24 0 24 0 24 0 42 47 1 B C . . . EI . . . . . .. . .                                            1.0419 1.803 34.046 ; ;B Crad rad m EI EI EI       VI) Moment Calculations 9 6 0 8 0 0 24 18 604 14 4 1 6 0 0 24 4 562 1 0419 4 4 2 0 4 5621 1 803 4 2 4 0 9 128 34 046 2 4 0 0 8 0 24 9 128 3 6 0 0 4 0 24 3 849 AB BA BC CB CD DC M . . . . M . . . . . M . EI . M .EI . M . . . . M . . . .                                                                               
  • 18. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 18 Example 4.7: Analyze the rigid frame by using Stiffness Matrix Method. Take EI constant. Solution: I) Dki=03 ( B C, ,  ) II)   0 0 50 B D CA              (No moments acting at joint B and C, horizontal force at B) III) Restrained Structure 75 Moment at B { } 75 Moment at C 0 Sum of Horizontal Reaction at B and C B DL CA             
  • 19. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 19 IV) Derivation of Stiffness matrix 1BLet   1CLet   Moment at B = 2.0 EI Moment at B = 0.5 EI Moment at C = 0.5 EI Moment at C = 2.0EI Reaction at B = 0.375 EI Reaction at C = 0.375 EI 1Let  
  • 20. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 20 Moment at B = 0.375 EI Moment at C = 0.375 EI Reaction at B+C=0.375EI   2 0 0 5 0 375 1 1 K = EI 0 5 2 0 0 375 0 375 0 375 0 37 1 5 B C B C . . . . . . . . .                   V) Equation of Equilibrium       D DLA A K D  2 0 0 5 0 375 0 5 2 0 0 375 0 0 75 3 0 75 50 0 75 0 375 0 375 B C . . . EI . . . . . .                                          VI) Moment Calculations 0 0 5 0 0 375 32 143 0 1 0 0 0 375 7 143 78 571 75 1 0 0 5 0 7 1431 21 428 75 0 5 1 0 0 92 857 190 476 0 0 0 5 0 375 92 857 0 0 1 0 0 375 8 AB BA BC CB CD DC M . . . M . . . . M . . . EI . M . . .EI . M . . . M . .                                                               2 143.                  
  • 21. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 21 Example 7.8: Determine the rotation of joint B, and the horizontal displacements of joints B and C. Take EI constant. Solution: I) Dki=03 ( B C, ,  ) II)   0 0 0 B D CA              (No moments acting at joint B and C, horizontal force at B) III) Restrained Structure 13.33 Moment at B { } 40 Moment at C 40 Horizontal Reaction at B B DL CA             
  • 22. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 22 IV) Derivation of Stiffness matrix 1BLet   1CLet   1Let     2 0 0 5 0 375 K = EI 0 5 1 0 0 0 375 0 0 187 1 1 1B C B C . . . . . . .                  
  • 23. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 23 V) Equation of Equilibrium       D DLA A K D  2 0 0 5 0 375 0 0 13 33 0 40 0 40 5 1 0 0 0 375 0 0 187 B C . . . EI . . . . .                                            113.77 96.88 442.05 ; ;B Crad rad m EI EI EI        VI) Moment Calculations 26 67 0 5 0 0 375 135 55 113 77 26 67 1 0 0 0 375 25 331 96 88 40 1 0 0 5 0 25 33 442 05 40 0 5 1 0 0 0 AB BA BC CB M . . . . . M . . . . EI . M . . .EI . M . .                                                          
  • 24. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 24 Example 4.9: Analyze the rigid jointed portal frame shown in Figure using Stiffness Matrix Method. Take EI constant. Solution: I) Dki=03 ( B C,  ) II)   0 0 B D C A          (No moments acting at joint B and C, horizontal force at B) III) Restrained Structure   4 0 Moment at B 20 Moment at C B DL C . A         
  • 25. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 25 IV) Derivation of Stiffness matrix 1BLet   1CLet     1 1 1 8 0 5 0 5 1 0 B C B C . . K EI . .             
  • 26. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 26 V) Equation of Equilibrium       D DLA A K D  0 4 0 1 8 0 5 0 20 0 5 1 0 B C . . . EI . .                         3.870 21.935 ;B Crad rad EI EI      VI) Moment Calculations 36 0 4 0 34 45 24 0 8 0 3 870 27 091 20 1 0 0 5 21 935 27 09 20 0 5 1 0 0 AB BA BC CB M . . M . . . EI M . . . .EI M . .                                                        Example 4.10: Determine global stiffness matrix of the frame ABC shown in figure using Stiffness Matrix Method. Take EI constant. Neglect axial deformation. Example 4.11: Analyse the frame shown in Figure using Stiffness Matrix Method and draw bending moment diagram. Neglect axial deformation. (Ans. B AB BA BC CB1.2/ EI, M 0.8kN.m,M 1.6kN.m, M 18.4kN.m, M 14.8kN.m      )
  • 27. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 27 Example 4.12: Determine the unknown joint displacements of the portal frame as shown in Figure using Stiffness Matrix Method. Take EI constant. Neglect axial deformation. Example 4.13: Analyse the portal frame as shown in Figure using Stiffness Matrix Method. Neglect axial deformation. Example 4.14: Determine the unknown joint displacements of the portal frame as shown in Figure using Stiffness Matrix Method. Take EI constant. Neglect axial deformation.
  • 28. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 28 Example 4.15: Analyze the rigid jointed portal frame shown in Figure 6 using Stiffness Matrix Method. Take EI constant. Draw BMD. Neglect axial deformation. Stiffness matrix method for analysis of trusses The truss may be statically determinate or indeterminate. All members are subjected to only direct stresses (tensile or compressive). Joint displacements are selected as unknown variables. Here we select two noded bar element for the formulation of stiffness matrix of truss element. Since the members are subjected to only axial forces, the displacements are only in the axial directions of the members. Therefore, the nodal displacement vector for the bar element is   1 2 e u' x' u'       
  • 29. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 29 where, 1 2and' ' u u are the displacements in axial direction of the element. The stiffness matrix of a bar element is 1 2 1 2 1 1 1 1 ' u' u' u'AE K u'L           Transformation matrix for the truss: ' 'x y = Local coordinate systems x, y = global coordinate system 1 2u' ,u' = Displacements in local coordinate system 1 1 2 2u , v ,u , v = Displacements in global coordinate system  =Angle measured in anticlockwise sense w.r.t. positive x-axis. Since axial directions of all members of truss are not same, hence in global coordinate system (x-y) there are two displacement components at every node. Hence the nodal displacement vector for typical truss element is   1 1 2 2 e u v x u v               Refereeing above figure, At Node 1, At Node 2, 1 1 1cos sin' u u v   2 2 2cos sin' u u v  
  • 30. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 30 Therefore, in matrix form above relation are 1 11 22 2 cos sin 0 0 0 0 cos sin ' ' u vu uu v                              ' e x L x where,  ' e x = vector of local unknowns  x = vector of global unknowns  L = Transformation matrix =   0 0 0 0 l m L l m        where, 2 1 2 1 cos or sin or x x y y l l m m L L         Stiffness matrix of truss element in global coordinate system       ' T K L K L   0 0 1 1 0 0 0 1 1 0 0 0 l m l mAE K l l mL m                      0 0 0 0 l m l m l mAE K l l m l mL m                     1 1 2 2 2 2 1 2 2 1 2 2 2 2 2 2 u v u v ul lm l lm vlm m lm mAE K uL l lm l lm vlm m lm m                
  • 31. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 31 Example 1: Analyze the truss as shown in figure. Cross-sectional area of members are AB=1000 mm2 , BC=800 mm2 , CA= 800 mm2 . Take E = 2 × 105 MPa Solution: Step 1: Degrees of freedom: 06 ( A A B B c cu ,v ,u ,v ,u ,v ) Assume x-axis horizontal through point c and vertical through point A. The coordinate of node A(0, 1.5), B(4, 1.5) and C (2, 0). Take E in GPa Member x2-x1 y2-y1 L l m AE/L (kN/mm) B.C. AB 4 0 4 1 0 50 uA = 0Av  BC -2 -1.5 2.5 -0.8 -0.6 64 0Bv  CA -2 1.5 2.5 -0.8 0.6 64 --- Step 2: Element stiffness matrices Stiffness matrix of element AB: Stiffness matrix of element BC:   1 0 1 0 0 0 0 0 50 1 0 1 0 0 0 0 0 A A B B A A AB B B u v u v u v K u v               0 64 0 48 0 64 0 48 0 48 0 36 0 48 0 36 64 0 64 0 48 0 64 0 48 0 48 0 36 0 48 0 36 B B c c B B BC c c u v u v u. . . . v. . . . K u. . . . v. . . .                 Stiffness matrix of element CA:   0 64 0 48 0 64 0 48 0 48 0 36 0 48 0 36 64 0 64 0 48 0 64 0 48 0 48 0 36 0 48 0 36 c c A A c c CA A A u v u v u. . . . v. . . . K u. . . . v. . . .                 Step 3: Global stiffness matrix (Total DOF are 06, size of stiffness matrix 6×6)
  • 32. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 32   90 96 30 72 50 0 40 96 30 72 30 72 23 04 0 0 30 72 23 04 50 0 90 96 30 72 40 96 30 72 0 0 30 72 23 04 30 72 23 04 40 96 30 72 40 96 30 72 81 92 0 30 72 23 04 30 72 23 04 0 46 08 A A B B c c A A B B c u v u v u v u. . . . v. . . . u. . . . K v. . . . u. . . . . . . . . .                              cv       Step 4: Reduced stiffness matrix (Since uA= 0Av  , 0Bv  eliminate corresponding rows and columns from global stiffness matrix)   90 96 40 96 30 72 40 96 81 9 0 30 72 0 46 08 B c c B c c u u v . . . u K . . u . . v            Step 5: Equation of equilibrium     K f  90 96 40 96 30 72 0 40 96 81 9 0 0 30 72 0 46 08 120 B c c . . . u . . u . . v                            1 6 0 8 3 67B c cu . mm, u . mm, v . mm      Example 2: Figure shows a plane truss with three members. Cross-sectional area of all members 800 mm2 Young modulus is 200 KN/mm2 . Determine deflection at loaded joint. Solution: Step 1: Degrees of freedom: 08 ( A A B B c c D Du ,v ,u ,v ,u ,v ,u ,v )
  • 33. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 33 Assume origin support A (0, 0). The coordinates of other nodes B (1000, 0), C(2000, 0) and D(1500, 1000) Member x2-x1 y2-y1 L l m AE/L (kN/mm) B.C. AD 1500 1000 1802.8 0.832 0.555 88.75 0A Au v  BD 500 1000 1118 0.447 0.894 143.112 0B Bu v  CD -500 1000 1118 -0.447 0.894 143.112 0c cu v  Step 2: Element stiffness matrices Stiffness matrix of element AD:   61 43 40 98 61 43 40 98 40 98 27 34 40 98 27 34 61 43 40 98 61 43 40 98 40 98 27 34 40 98 27 34 A A D D A A AD D D u v u v u. . . . v. . . . K u. . . . v. . . .                     ( 0A Au v  ) Stiffness matrix of element BD:   28 59 57 19 28 59 57 19 57 19 114 38 57 19 114 38 28 59 57 19 28 59 57 19 57 19 114 38 57 19 114 38 B B D D B B BD D D u v u v u. . . . v. . . . K u. . . . v. . . .                     ( 0B Bu v  ) Stiffness matrix of element CD:   28 59 57 19 28 59 57 19 57 19 114 38 57 19 114 38 28 59 57 19 28 59 57 19 57 19 114 38 57 19 114 38 C C D D C C CD D D u v u v u. . . . v. . . . K u. . . . v. . . .                     ( 0c cu v  ) Step 3: Reduced stiffness matrix   118 61 40 98 40 98 256 10 D D D D u v u. . K v. .        Step 5: Equation of equilibrium     K f 
  • 34. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 34 118 61 40 98 200 40 98 256 10 0 D D u. . v. .                1 785 0 286D Du . mm, v . mm   Example 3: for the truss as shown in figure using stiffness matrix method, determines deflections at loaded joints. The joint B is subjected to 50 kN horizontal force towards left and 80 kN force vertically downward. Take cross- sectional area of all members 1000 mm2 Young modulus is 200 GPa. Solution: Step 1: Degrees of freedom: 06 ( A A B B c c D Du ,v ,u ,v ,u ,v ,u ,v ). Assume origin point B. The coordinates of points areA (-4, 3), B (0,0), C (4,-3), D (-4, -3) Member x2-x1 y2-y1 L l m AE/L (kN/mm) B.C. AB 4000 -3000 5000 0.8 -0.6 40 0A Au v  DB 4000 -3000 5000 0.8 -0.6 40 0D Du v  CB -4000 -3000 5000 -0.8 -0.6 40 0c cu v  Step 2: Stiffness matrix of element AB:   0 64 0 48 0 64 0 48 0 48 0 36 0 48 0 36 40 0 64 0 48 0 64 0 48 0 48 0 36 0 48 0 36 A A B B A A AB B B u v u v u. . . . v. . . . K u. . . . v. . . .                     ( 0A Au v  ) Stiffness matrix of element DB:
  • 35. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 35   0 64 0 48 0 64 0 48 0 48 0 36 0 48 0 36 40 0 64 0 48 0 64 0 48 0 48 0 36 0 48 0 36 D D B B D D DB B B u v u v u. . . . v. . . . K u. . . . v. . . .                     ( 0D Du v  ) Stiffness matrix of element CB:   0 64 0 48 0 64 0 48 0 48 0 36 0 48 0 36 40 0 64 0 48 0 64 0 48 0 48 0 36 0 48 0 36 C C B B C C CB B B u v u v u. . . . v. . . . K u. . . . v. . . .                     ( 0c cu v  ) Step 3: Reduced stiffness matrix   1 92 0 48 40 0 48 1 08 B B B B u v u. . K v. .       Step 4: Equation of equilibrium     K f  1 92 0 48 50 40 0 48 1 08 80 B B u. . v. .                 0 00125 0 0024B Bu . mm, v . mm    Example 3: Determine the deflections at loaded joint in two bar truss supported by spring as shown in figure. Bar one has length of 5m and bar two a length of 10m. The stiffness of spring is 2000 kN/m. Take A = 5×10-4 m2 and E = 200 GPa.
  • 36. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 36 Solution: Step 1: Degrees of freedom: 06 ( 1 1 2 2 3 3u ,v ,u ,v ,u ,v ) Take origin node 1. The coordinates of nodes are 1(0, 0), 2(-3.535, 3.535), 3(-10, 0) Member x2-x1 y2-y1 L l m AE/L (kN/mm) B.C. 1-2 -3.535 3.535 5 0.707 -0.707 200×102 2 2 0u v  1-3 -10 0 10 -1 0 100×102 3 3 0u v  1-4 --- --- --- --- --- --- --- Step 2: Stiffness matrix of element 1-2:   1 1 2 2 1 12 1 2 2 2 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 200 10 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 u v u v u. . . . v. . . . K u. . . . v. . . .                       ( 2 2 0u v  ) Stiffness matrix of element 1-3:   1 1 3 3 1 12 1 3 3 3 1 0 1 0 0 0 0 0 100 10 1 0 1 0 0 0 0 0 u v u v u v K u v                  ( 3 3 0u v  ) Stiffness matrix of Spring element   1 4 1 3 4 1 1 2000 1 1 v v v K v         Step 3: Reduced stiffness matrix   1 1 1 1 20000 10000 10000 12000 u v u K v       Step 4: Equation of equilibrium:     K f 
  • 37. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 37 1 1 20000 10000 0 10000 12000 40 u v                 1 12 857 5 714u . mm, v . mm    Example: For the plane truss shown in figure, determine the x and y components of displacements at node 1. Take E = 70 GPa and A = 500 mm2 for all elements. Length of member 1-3 is 2500mm. Example: For the plane truss composed of three elements shown in figure subjected to a downward force of 50 kN applied at node 1, determine the x and y components of displacements at node 1. Take E = 200 GPa and A = 1000 mm2 for all elements. Example: Figure shows a plane truss with two members. Both the members are of cross-sectional area 70.71 mm2 . Young’s modulus is 200 kN/mm2 . Determine deflections of loaded joint and hence the member forces.
  • 38. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 38 Example: A steel truss as shown in figure. The modulus of elasticity is 210 GPa. The cross sectional area of member AB is 300 mm2 , BC is 400 mm2 and AC is 500 mm2 . Calculate the horizontal and vertical displacements at point ‘A’ using stiffness matrix method. Example: Figure shows a plane truss with three members. All members are of length 1000 mm and cross-sectional area 600 mm2 . Young’s modulus is 150 kN/mm2 . Determine unknown joint displacements of the truss. Example: For the two bar truss shown in figure determine the displacements at the loaded joint using stiffness matrix method. Take A = 200 mm2 and E = 70 GPa.
  • 39. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 39 Example: Find the vertical and horizontal deflection at point C for the two member truss as shown in figure. Area of inclined member is 2000 mm2 whereas horizontal member is 1600 mm2 . Take E = 200 GPa Example: Figure shows plane truss with three members. All members are of length 1000mm and c/s area 600mm2. E=150 KN/mm2. Determine forces in members of truss using stiffness matrix method. Example: Analyze the two member truss shown in figure using stiffness matrix method. Take c/s area of each member 1000 mm2 and E = 200 GPa. The length of each member is 5m.
  • 40. SRES’s Sanjivani College of Engineering, Kopargaon Structural Analysis-II, Prepared by Prof. Jape A. S. Page 40 Example: For the plane truss structure shown in figure, determine the displacements at the loaded joint using stiffness matrix method. Assume A = 2000 mm2 and E = 200 GPa.