SlideShare uma empresa Scribd logo
1 de 24
GLUTAMIC ACID FERMENTATION
INTRODUCTION
• Glutamic acid was discovered by Ritthausen in 1866.
• In 1908 professor Ikeda found that the material enhancing the taste of
sea weed (tangle) soup came from a sodium salt of glutamic acid
(monosodium glutamate).
• Since then monosodium glutamate has been widely used in both the food
industry and by the general public as a flavor-enhancing agent.
• The demand of glutamic acid has increased rapidly. Before 1956 glutamic acid
was mainly obtained by the hydrolysis of plant proteins . gluten
• In 1956 Japanese investigators reported the possibility ofproducing glutamic acid
by rnicrobiological Means, and began on an industrial scale the production of this
amino acid
333.8 °CBoiling point
APPLICATIONS
• Gluatamic acid is Important in brain metabolism hence various analogues of
glutamic acid are used in treating various neuropathic diseases.
• Since 1908, monosodium glutamate has been used as a flavor enhancing agent
both by the food industry and the general public.
• Poly glutamic acid (PGA) is a naturally occurring anionic polymer that is
biodegradable, edible, and non-toxic towards human and environment .
• It is a good candidate for various industrial applications including thickener,
bitterness reliving agent , Cryoprotectant.
• Curable biological adhesive
• heavy metals absorbers .
• Cosmetics
- L-Glutamic Acid is widely used as Hair restorer in Cosmetics.
- As Hair restorer: in treatment of Hair Loss.
- As Wrinkle: in preventing aging
Microorganisms
• Corynebacteriumspp. (C. glutamicum; C. lilum)
Brevibacterium spp. (B. divericartum: B. alanicum)
Microbacterium spp. (M. flavumvar. glutamicum)
Arthrobacter spp. (A. globiformis; A. aminofaciens)
PRODUCTION OF GLUTAMIC ACID BY
WILD TYPE BACTERIA
• (i) Organisms: Wild type strains of the organisms of the four genera
mentioned above are now used for the production of glutamic acid.
• The preferred organism is however Corynebacterium glutamicum. The
properties common to the glutamic acid bacteria are:
• (a) they are all Gram-positive and non-motile;
•(b) they require biotin to grow;
• (c) they lack or have very low amounts of the enzyme alpha-ketoglutarate,
which is formed by removal of CO2 from isocitrate formed in TCA cycle
(citric acid cylce).
• Since alpha -ketoglutarate is not dehydrogenated it is available to form
glutarate by reacting with ammonia.
• (ii) Conditions of the fermentation: The composition of a medium which
has been used for the production of glutamic acid is as follows (%):
glucose, 10; corn steep liquor 0.25; enzymatic casein hydrolysate 0.25;
K2HPO(Dipotassium phosphate )4 0.1, Mg. SO4, 7 H2 O, 0.25; urea, 0.5.
• It should be noted that besides glucose, hydrocarbons have served as
carbon sources for glutamic acid production.
• The optimal temperature is 30° to 35° and a high degree of aeration is
necessary.
• (iii)Biochemical basis for glutamic acid production: Studies by several
workers have clarified the basis for glutamic acid production as
summarized below.
• (a) Glutamic acid production is greatest when biotin is limiting; that is,
when it is sub optimal. When biotin is optimal, growth is luxuriant and lactic
acid, not glutamic acid, is excreted.
• The optimal level of biotin is 0.5 mg per gm of dry cells; with higher
amounts glutamic acid production falls.
• (b) The isocitrate-succinate part of the TCA cycle is needed for growth. It
is only after the growth phase that glutamic acid production becomes
optimal.
• (c) An increase in the permeability of the cell is necessary so as to permit
the outward diffusion of glutamic acid, essential for high glutamic acid
• This increased permeability to the acid can be achieved in the following ways:
• (i) ensuring biotin deficiency in the medium
• (ii) treatment with fatty acid derivatives,
• (iii) ensuring oleic acid deficiency in mutants requiring oleic acid (C16 - C18).
• (iv)addition of penicillin during growth of glutamic acid bacteria, Cells treated in
one of the first three ways above have cell membranes in which the saturated to
unsaturated fatty acid ratio is abnormal, therefore the permeability barrier is
destroyed and glutamic acid accumulates in the medium.
• The major factor in glutamic acid production by wild type organism is thus
altered permeability.
• Treatment with penicillin prevents cell-wall formation. Cell wall inhibiting
antibiotics such as penicillin and cephalosporin have enabled the use of
molasses .which are rich in biotin for glutamic acid production.
FERMENTOR PRODUCTION OF AMINO ACID
•
21.6.1 Fermentor Procedure
Starting from shake flasks the inoculum culture is grown in shake flasks and transferred
to the first seed tank (1,000–2,000 liters) in size.
• After suitable growth the inoculum is tansferred to the second seed tank (10,000–
20,000 liters),
• which serves as inoculum for the production tank (50,000–500,000 liters).
• The fermentation is usually batch or fed-batch .
• In batch cultivation all the nutrients are added at once at the beginning of the
fermentation, except for ammonia.
• which is added intermittently to help adjust the pH, and fermentation continues until
sugar is exhausted.
• In a fed-batch process, the fermentor is only partially filled with
medium and additional nutrients added either intermittently or continuously
until an optimum yield is obtained
• . The fed-batch appears preferable for the following reasons:
(a) Most amino acid production requires high sugar concentrations of up to 10%.
If all were added immediately, acid would be quickly produced which will inhibit
the growth of the microorganisms and hence reduce yield
• (b) Where auxotrophic mutants are used, excess supply of nutrients leads to
reduced production due to overgrowth of cells or feed back regulation by the
nutrient.
(c) During the lag phase of growth, the oxgen demand of the organism may
exceed that of the organism leading to reduced growth
21.6.2 Raw Materials
• The main raw materials used are cane or beet molasses and starch hydrolysates
from corn or cassava as glucose.
• In the US, the preferred carbon source is corn syrup from corn, whereas in
Europe and South America it is beet molasses.
• As nitrogen source, inorganic sources such as ammonia or ammonium sulfate is
generally used.
• Phosphates, vitamins and other necessary supplements are usually provided with
corn steep liquour.
FERMENTATION
The usual culture medium for glutamic acid fermentationcontains a carbon source
such as glucose, the acid hydrolysate ofstarch, molasses, or a mixture of these
substances.
A nitrogen source such as urea, and other chemicals is present.
The prepared culture medium is sterilized in a fermentor by steam.
When the temperature of the medium cools down to 30°C, the micro-organism
is added to the fermentor in a proper inoculum size.
The micro-organism is incubated for thirty-six to forty-eight hours during which
time the Ph(7-7.8), temperature(30-35) , and aeration rate are carefully controlled.
21.6.4 Down Stream Processing
• After fermentation, the cells may be filtered using a rotary vacuum filter.
Sometimes filtration can be improved by using filter aids.
• These filter aids, usually, kiesselghur which are based on diatomaceous earth,
improve the porosity of a resulting filter cake leading to a faster flow rate.
• Before filtration a thin layer is used as a precoat of the filter (normally standard
filters).
The extraction method of the amino acid from the filtrate, depends on the level
of purity desired in the product.
• However two methods are generally used: the chromatographic
(ion exchange) method or the concentration-crystallization method.
Crystallization
• Crystallization is often used as a method to recover the amino acid. Due to the
amphoteric character (contains both acidic and basic groups) of amino acids,
their solubility is greatly influenced by the pH of the solution and usually show
minima at the isoelectric point (zero net charge).
• Since temperature also influences the solubility of amino acids
and their salts, lowering the temperature can be used in advance as a means of
obtaining the required product.
• Precipitation of amino acids with salts, like ammonium and calcium salts, and
with metals like zinc are also commonly used.
Ion exchange
• resins have been widely used for the extraction and purification of amino
acids from the fermentation broth.
• The adsorption of amino acids by ion exchange resinsis strongly affected by the
pH of the solution and by the presence of contaminant ions.
• There are two types of ion exchange resins; cation exchange resins and anion
exchange resins.
• Cation exchange resins bind positively charged amino acids (this is in the
situation where the pH of the solution is lower then the isoelectric point (IEP) of
the amino acid),
• whereas anion exchange resins bind negatively charged amino acids (pH of the
solution is higher than IEP).
• Extraction of the bound amino acid(s) is done by introducing a solution
containing the counterion of the resin.
•
• Anion exchange resins are generally lower in their exchange capacity and
durability than cation exchange resins and are seldom used for industrial
separation.
• In general, ion exchange as a tool for separation is only used when other steps
fail, because of its tedious operation, small capacity and high costs
According to the findings of the scientific panel of the PFA, Chinese salt
contains Monosodium glutamate (MSG) which can cause headaches,
fatigue, palpitations, nausea and vomiting, sweating, flushing and numbness
of the face, more so among people who are sensitive to it.
It can also cause hypertension and is extremely hazardous for pregnant
women, the panel found.
According to some reports, regular use of this ingredient can cause long-
term issues like high blood pressure, autism, hormonal imbalance, epilepsy,
food allergies, asthma, reduction in bile formation, cancer and possible
sterility in females.
Glutamic acid fermentation

Mais conteúdo relacionado

Mais procurados

Citric Acid Production
Citric Acid ProductionCitric Acid Production
Citric Acid Production
Dinesh S
 

Mais procurados (20)

Media for industrial fermentation
Media for industrial fermentationMedia for industrial fermentation
Media for industrial fermentation
 
Production of glutamic acid
Production of glutamic acidProduction of glutamic acid
Production of glutamic acid
 
FERMENTATION TYPES .
FERMENTATION TYPES .FERMENTATION TYPES .
FERMENTATION TYPES .
 
Production of tetracyclin and cephalosporin
Production of tetracyclin and cephalosporinProduction of tetracyclin and cephalosporin
Production of tetracyclin and cephalosporin
 
Penicillin Production
Penicillin ProductionPenicillin Production
Penicillin Production
 
Production of protease and amylase
Production of protease and amylaseProduction of protease and amylase
Production of protease and amylase
 
Riboflavin–vitamin b2 fermentation process
Riboflavin–vitamin b2 fermentation processRiboflavin–vitamin b2 fermentation process
Riboflavin–vitamin b2 fermentation process
 
Production of vitamin B12 using fermentation
Production of vitamin B12 using fermentationProduction of vitamin B12 using fermentation
Production of vitamin B12 using fermentation
 
Fermentation media
Fermentation mediaFermentation media
Fermentation media
 
Design and preparation of media for fermentation
Design and preparation of media for fermentationDesign and preparation of media for fermentation
Design and preparation of media for fermentation
 
Lipases & Industrial Production of Lipases
Lipases & Industrial Production of Lipases Lipases & Industrial Production of Lipases
Lipases & Industrial Production of Lipases
 
Industrial Production of L-Lysine by Fermentation
Industrial Production of L-Lysine by FermentationIndustrial Production of L-Lysine by Fermentation
Industrial Production of L-Lysine by Fermentation
 
Production of lipases and cellulase
Production of lipases and cellulaseProduction of lipases and cellulase
Production of lipases and cellulase
 
Citric Acid Production
Citric Acid ProductionCitric Acid Production
Citric Acid Production
 
Vitamin b12
Vitamin b12Vitamin b12
Vitamin b12
 
Upstream processing
Upstream processingUpstream processing
Upstream processing
 
Design of a fermentor
Design of a fermentorDesign of a fermentor
Design of a fermentor
 
Citric acid production
Citric acid productionCitric acid production
Citric acid production
 
Industrial fermentation
Industrial fermentation Industrial fermentation
Industrial fermentation
 
Industrial Production of Amino Acid (L-Lysine)
Industrial Production of Amino Acid (L-Lysine)Industrial Production of Amino Acid (L-Lysine)
Industrial Production of Amino Acid (L-Lysine)
 

Semelhante a Glutamic acid fermentation

enzymes-151002080055-lva1-app6892.pptx
enzymes-151002080055-lva1-app6892.pptxenzymes-151002080055-lva1-app6892.pptx
enzymes-151002080055-lva1-app6892.pptx
FatmaGomaa11
 
enzymes-151002080055-lva1-app6892 (1).pdf
enzymes-151002080055-lva1-app6892 (1).pdfenzymes-151002080055-lva1-app6892 (1).pdf
enzymes-151002080055-lva1-app6892 (1).pdf
PratikShinde189184
 
CITRIC ACID PRODUCTION
CITRIC ACID PRODUCTIONCITRIC ACID PRODUCTION
CITRIC ACID PRODUCTION
Aliya Firdous
 

Semelhante a Glutamic acid fermentation (20)

Production of Glutamic acid.pptx
Production of Glutamic acid.pptxProduction of Glutamic acid.pptx
Production of Glutamic acid.pptx
 
Ca production
Ca productionCa production
Ca production
 
Glutamate fermentation final
Glutamate fermentation finalGlutamate fermentation final
Glutamate fermentation final
 
L-Glutamic-acid-Production.pptx
L-Glutamic-acid-Production.pptxL-Glutamic-acid-Production.pptx
L-Glutamic-acid-Production.pptx
 
L- GLUTAMIC ACID.pptx
L- GLUTAMIC ACID.pptxL- GLUTAMIC ACID.pptx
L- GLUTAMIC ACID.pptx
 
citricacid production.pdf
citricacid production.pdfcitricacid production.pdf
citricacid production.pdf
 
Citric acid production
Citric acid productionCitric acid production
Citric acid production
 
enzymes-151002080055-lva1-app6892.pptx
enzymes-151002080055-lva1-app6892.pptxenzymes-151002080055-lva1-app6892.pptx
enzymes-151002080055-lva1-app6892.pptx
 
Enzymes & their Production
Enzymes & their ProductionEnzymes & their Production
Enzymes & their Production
 
enzymes-151002080055-lva1-app6892 (1).pdf
enzymes-151002080055-lva1-app6892 (1).pdfenzymes-151002080055-lva1-app6892 (1).pdf
enzymes-151002080055-lva1-app6892 (1).pdf
 
Dr. p. suganya citric acid production
Dr. p. suganya citric acid productionDr. p. suganya citric acid production
Dr. p. suganya citric acid production
 
glutamic acid
glutamic acidglutamic acid
glutamic acid
 
CITRIC ACID PRODUCTION
CITRIC ACID PRODUCTIONCITRIC ACID PRODUCTION
CITRIC ACID PRODUCTION
 
alpha for organic acid
alpha for organic acidalpha for organic acid
alpha for organic acid
 
Industrial processing of amino acid slide
Industrial processing of amino acid slideIndustrial processing of amino acid slide
Industrial processing of amino acid slide
 
SINGLE CELL PROTEIN
SINGLE CELL PROTEINSINGLE CELL PROTEIN
SINGLE CELL PROTEIN
 
Citric acid production
Citric acid productionCitric acid production
Citric acid production
 
Single cell protein
Single cell proteinSingle cell protein
Single cell protein
 
Fermentation.pptx
Fermentation.pptxFermentation.pptx
Fermentation.pptx
 
Ethanol fermentation
Ethanol fermentationEthanol fermentation
Ethanol fermentation
 

Mais de NOMI KhanS (15)

Yeast chromosome structure and function
Yeast chromosome structure and functionYeast chromosome structure and function
Yeast chromosome structure and function
 
Programmed cell death
Programmed cell deathProgrammed cell death
Programmed cell death
 
Hepatitis viruses
Hepatitis virusesHepatitis viruses
Hepatitis viruses
 
acetone fermentation
acetone fermentationacetone fermentation
acetone fermentation
 
Sex chromosome translocation
Sex chromosome translocation Sex chromosome translocation
Sex chromosome translocation
 
Chromatin structure
Chromatin structureChromatin structure
Chromatin structure
 
Cloning vectors
Cloning vectorsCloning vectors
Cloning vectors
 
Rabies
RabiesRabies
Rabies
 
Parental sex chromosome Aneuploidy
Parental sex chromosome AneuploidyParental sex chromosome Aneuploidy
Parental sex chromosome Aneuploidy
 
Interaction of microbes with eukaryotes
Interaction of microbes with eukaryotesInteraction of microbes with eukaryotes
Interaction of microbes with eukaryotes
 
lambda cloning vector
lambda cloning vectorlambda cloning vector
lambda cloning vector
 
transfection and invitro packaging of phage genome
transfection and invitro packaging of phage genometransfection and invitro packaging of phage genome
transfection and invitro packaging of phage genome
 
Transformation
TransformationTransformation
Transformation
 
SPECIES OF Annelids
SPECIES OF AnnelidsSPECIES OF Annelids
SPECIES OF Annelids
 
parasitic helminthis
parasitic helminthisparasitic helminthis
parasitic helminthis
 

Último

➥🔝 7737669865 🔝▻ manali Call-girls in Women Seeking Men 🔝manali🔝 Escorts S...
➥🔝 7737669865 🔝▻ manali Call-girls in Women Seeking Men  🔝manali🔝   Escorts S...➥🔝 7737669865 🔝▻ manali Call-girls in Women Seeking Men  🔝manali🔝   Escorts S...
➥🔝 7737669865 🔝▻ manali Call-girls in Women Seeking Men 🔝manali🔝 Escorts S...
nirzagarg
 
All Types👩Of Sex Call Girls In Mohali 9053900678 Romance Service Mohali Call ...
All Types👩Of Sex Call Girls In Mohali 9053900678 Romance Service Mohali Call ...All Types👩Of Sex Call Girls In Mohali 9053900678 Romance Service Mohali Call ...
All Types👩Of Sex Call Girls In Mohali 9053900678 Romance Service Mohali Call ...
Chandigarh Call girls 9053900678 Call girls in Chandigarh
 

Último (20)

Karve Nagar ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready ...
Karve Nagar ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready ...Karve Nagar ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready ...
Karve Nagar ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready ...
 
Daund ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For Se...
Daund ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For Se...Daund ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For Se...
Daund ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For Se...
 
kala ilam specialist expert In UK, london, England, Dubai, Kuwait, Germnay, I...
kala ilam specialist expert In UK, london, England, Dubai, Kuwait, Germnay, I...kala ilam specialist expert In UK, london, England, Dubai, Kuwait, Germnay, I...
kala ilam specialist expert In UK, london, England, Dubai, Kuwait, Germnay, I...
 
VIP Model Call Girls Ranjangaon ( Pune ) Call ON 8005736733 Starting From 5K ...
VIP Model Call Girls Ranjangaon ( Pune ) Call ON 8005736733 Starting From 5K ...VIP Model Call Girls Ranjangaon ( Pune ) Call ON 8005736733 Starting From 5K ...
VIP Model Call Girls Ranjangaon ( Pune ) Call ON 8005736733 Starting From 5K ...
 
VIP Model Call Girls Mundhwa ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Mundhwa ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Mundhwa ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Mundhwa ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Get Premium Alandi Road Call Girls (8005736733) 24x7 Rate 15999 with A/c Room...
Get Premium Alandi Road Call Girls (8005736733) 24x7 Rate 15999 with A/c Room...Get Premium Alandi Road Call Girls (8005736733) 24x7 Rate 15999 with A/c Room...
Get Premium Alandi Road Call Girls (8005736733) 24x7 Rate 15999 with A/c Room...
 
Dighi ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For Se...
Dighi ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For Se...Dighi ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For Se...
Dighi ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For Se...
 
Call Girls Katraj Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Katraj Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Katraj Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Katraj Call Me 7737669865 Budget Friendly No Advance Booking
 
Budhwar Peth { Russian Call Girls Pune (Adult Only) 8005736733 Escort Servic...
Budhwar Peth { Russian Call Girls Pune  (Adult Only) 8005736733 Escort Servic...Budhwar Peth { Russian Call Girls Pune  (Adult Only) 8005736733 Escort Servic...
Budhwar Peth { Russian Call Girls Pune (Adult Only) 8005736733 Escort Servic...
 
Top Rated Pune Call Girls Baner ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated  Pune Call Girls Baner ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...Top Rated  Pune Call Girls Baner ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated Pune Call Girls Baner ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
 
Top Rated Pune Call Girls Yashwant Nagar ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Pune Call Girls Yashwant Nagar ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Pune Call Girls Yashwant Nagar ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Pune Call Girls Yashwant Nagar ⟟ 6297143586 ⟟ Call Me For Genuine ...
 
➥🔝 7737669865 🔝▻ manali Call-girls in Women Seeking Men 🔝manali🔝 Escorts S...
➥🔝 7737669865 🔝▻ manali Call-girls in Women Seeking Men  🔝manali🔝   Escorts S...➥🔝 7737669865 🔝▻ manali Call-girls in Women Seeking Men  🔝manali🔝   Escorts S...
➥🔝 7737669865 🔝▻ manali Call-girls in Women Seeking Men 🔝manali🔝 Escorts S...
 
Booking open Available Pune Call Girls Sanaswadi 6297143586 Call Hot Indian ...
Booking open Available Pune Call Girls Sanaswadi  6297143586 Call Hot Indian ...Booking open Available Pune Call Girls Sanaswadi  6297143586 Call Hot Indian ...
Booking open Available Pune Call Girls Sanaswadi 6297143586 Call Hot Indian ...
 
All Types👩Of Sex Call Girls In Mohali 9053900678 Romance Service Mohali Call ...
All Types👩Of Sex Call Girls In Mohali 9053900678 Romance Service Mohali Call ...All Types👩Of Sex Call Girls In Mohali 9053900678 Romance Service Mohali Call ...
All Types👩Of Sex Call Girls In Mohali 9053900678 Romance Service Mohali Call ...
 
best call girls in Pune | Whatsapp No 8005736733 VIP Escorts Service Availabl...
best call girls in Pune | Whatsapp No 8005736733 VIP Escorts Service Availabl...best call girls in Pune | Whatsapp No 8005736733 VIP Escorts Service Availabl...
best call girls in Pune | Whatsapp No 8005736733 VIP Escorts Service Availabl...
 
Pushkar call girls 📞 8617370543At Low Cost Cash Payment Booking
Pushkar call girls 📞 8617370543At Low Cost Cash Payment BookingPushkar call girls 📞 8617370543At Low Cost Cash Payment Booking
Pushkar call girls 📞 8617370543At Low Cost Cash Payment Booking
 
VVIP Pune Call Girls Narayangaon WhatSapp Number 8005736733 With Elite Staff ...
VVIP Pune Call Girls Narayangaon WhatSapp Number 8005736733 With Elite Staff ...VVIP Pune Call Girls Narayangaon WhatSapp Number 8005736733 With Elite Staff ...
VVIP Pune Call Girls Narayangaon WhatSapp Number 8005736733 With Elite Staff ...
 
VIP Model Call Girls Wadgaon Sheri ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Wadgaon Sheri ( Pune ) Call ON 8005736733 Starting From ...VIP Model Call Girls Wadgaon Sheri ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Wadgaon Sheri ( Pune ) Call ON 8005736733 Starting From ...
 
Call Girls Uruli Kanchan Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Uruli Kanchan Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Uruli Kanchan Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Uruli Kanchan Call Me 7737669865 Budget Friendly No Advance Booking
 
Baner Pashan Link Road [ Escorts in Pune ₹7.5k Pick Up & Drop With Cash Payme...
Baner Pashan Link Road [ Escorts in Pune ₹7.5k Pick Up & Drop With Cash Payme...Baner Pashan Link Road [ Escorts in Pune ₹7.5k Pick Up & Drop With Cash Payme...
Baner Pashan Link Road [ Escorts in Pune ₹7.5k Pick Up & Drop With Cash Payme...
 

Glutamic acid fermentation

  • 2. INTRODUCTION • Glutamic acid was discovered by Ritthausen in 1866. • In 1908 professor Ikeda found that the material enhancing the taste of sea weed (tangle) soup came from a sodium salt of glutamic acid (monosodium glutamate). • Since then monosodium glutamate has been widely used in both the food industry and by the general public as a flavor-enhancing agent. • The demand of glutamic acid has increased rapidly. Before 1956 glutamic acid was mainly obtained by the hydrolysis of plant proteins . gluten
  • 3. • In 1956 Japanese investigators reported the possibility ofproducing glutamic acid by rnicrobiological Means, and began on an industrial scale the production of this amino acid
  • 4.
  • 6. APPLICATIONS • Gluatamic acid is Important in brain metabolism hence various analogues of glutamic acid are used in treating various neuropathic diseases. • Since 1908, monosodium glutamate has been used as a flavor enhancing agent both by the food industry and the general public. • Poly glutamic acid (PGA) is a naturally occurring anionic polymer that is biodegradable, edible, and non-toxic towards human and environment . • It is a good candidate for various industrial applications including thickener, bitterness reliving agent , Cryoprotectant. • Curable biological adhesive • heavy metals absorbers .
  • 7. • Cosmetics - L-Glutamic Acid is widely used as Hair restorer in Cosmetics. - As Hair restorer: in treatment of Hair Loss. - As Wrinkle: in preventing aging
  • 8.
  • 9. Microorganisms • Corynebacteriumspp. (C. glutamicum; C. lilum) Brevibacterium spp. (B. divericartum: B. alanicum) Microbacterium spp. (M. flavumvar. glutamicum) Arthrobacter spp. (A. globiformis; A. aminofaciens)
  • 10. PRODUCTION OF GLUTAMIC ACID BY WILD TYPE BACTERIA • (i) Organisms: Wild type strains of the organisms of the four genera mentioned above are now used for the production of glutamic acid. • The preferred organism is however Corynebacterium glutamicum. The properties common to the glutamic acid bacteria are: • (a) they are all Gram-positive and non-motile; •(b) they require biotin to grow;
  • 11. • (c) they lack or have very low amounts of the enzyme alpha-ketoglutarate, which is formed by removal of CO2 from isocitrate formed in TCA cycle (citric acid cylce). • Since alpha -ketoglutarate is not dehydrogenated it is available to form glutarate by reacting with ammonia. • (ii) Conditions of the fermentation: The composition of a medium which has been used for the production of glutamic acid is as follows (%): glucose, 10; corn steep liquor 0.25; enzymatic casein hydrolysate 0.25; K2HPO(Dipotassium phosphate )4 0.1, Mg. SO4, 7 H2 O, 0.25; urea, 0.5. • It should be noted that besides glucose, hydrocarbons have served as carbon sources for glutamic acid production. • The optimal temperature is 30° to 35° and a high degree of aeration is necessary.
  • 12. • (iii)Biochemical basis for glutamic acid production: Studies by several workers have clarified the basis for glutamic acid production as summarized below. • (a) Glutamic acid production is greatest when biotin is limiting; that is, when it is sub optimal. When biotin is optimal, growth is luxuriant and lactic acid, not glutamic acid, is excreted. • The optimal level of biotin is 0.5 mg per gm of dry cells; with higher amounts glutamic acid production falls. • (b) The isocitrate-succinate part of the TCA cycle is needed for growth. It is only after the growth phase that glutamic acid production becomes optimal. • (c) An increase in the permeability of the cell is necessary so as to permit the outward diffusion of glutamic acid, essential for high glutamic acid
  • 13. • This increased permeability to the acid can be achieved in the following ways: • (i) ensuring biotin deficiency in the medium • (ii) treatment with fatty acid derivatives, • (iii) ensuring oleic acid deficiency in mutants requiring oleic acid (C16 - C18). • (iv)addition of penicillin during growth of glutamic acid bacteria, Cells treated in one of the first three ways above have cell membranes in which the saturated to unsaturated fatty acid ratio is abnormal, therefore the permeability barrier is destroyed and glutamic acid accumulates in the medium. • The major factor in glutamic acid production by wild type organism is thus altered permeability. • Treatment with penicillin prevents cell-wall formation. Cell wall inhibiting antibiotics such as penicillin and cephalosporin have enabled the use of molasses .which are rich in biotin for glutamic acid production.
  • 14. FERMENTOR PRODUCTION OF AMINO ACID • 21.6.1 Fermentor Procedure Starting from shake flasks the inoculum culture is grown in shake flasks and transferred to the first seed tank (1,000–2,000 liters) in size. • After suitable growth the inoculum is tansferred to the second seed tank (10,000– 20,000 liters), • which serves as inoculum for the production tank (50,000–500,000 liters). • The fermentation is usually batch or fed-batch . • In batch cultivation all the nutrients are added at once at the beginning of the fermentation, except for ammonia. • which is added intermittently to help adjust the pH, and fermentation continues until sugar is exhausted.
  • 15. • In a fed-batch process, the fermentor is only partially filled with medium and additional nutrients added either intermittently or continuously until an optimum yield is obtained • . The fed-batch appears preferable for the following reasons: (a) Most amino acid production requires high sugar concentrations of up to 10%. If all were added immediately, acid would be quickly produced which will inhibit the growth of the microorganisms and hence reduce yield • (b) Where auxotrophic mutants are used, excess supply of nutrients leads to reduced production due to overgrowth of cells or feed back regulation by the nutrient. (c) During the lag phase of growth, the oxgen demand of the organism may exceed that of the organism leading to reduced growth
  • 16. 21.6.2 Raw Materials • The main raw materials used are cane or beet molasses and starch hydrolysates from corn or cassava as glucose. • In the US, the preferred carbon source is corn syrup from corn, whereas in Europe and South America it is beet molasses. • As nitrogen source, inorganic sources such as ammonia or ammonium sulfate is generally used. • Phosphates, vitamins and other necessary supplements are usually provided with corn steep liquour.
  • 17. FERMENTATION The usual culture medium for glutamic acid fermentationcontains a carbon source such as glucose, the acid hydrolysate ofstarch, molasses, or a mixture of these substances. A nitrogen source such as urea, and other chemicals is present. The prepared culture medium is sterilized in a fermentor by steam. When the temperature of the medium cools down to 30°C, the micro-organism is added to the fermentor in a proper inoculum size. The micro-organism is incubated for thirty-six to forty-eight hours during which time the Ph(7-7.8), temperature(30-35) , and aeration rate are carefully controlled.
  • 18. 21.6.4 Down Stream Processing • After fermentation, the cells may be filtered using a rotary vacuum filter. Sometimes filtration can be improved by using filter aids. • These filter aids, usually, kiesselghur which are based on diatomaceous earth, improve the porosity of a resulting filter cake leading to a faster flow rate. • Before filtration a thin layer is used as a precoat of the filter (normally standard filters). The extraction method of the amino acid from the filtrate, depends on the level of purity desired in the product. • However two methods are generally used: the chromatographic (ion exchange) method or the concentration-crystallization method.
  • 19. Crystallization • Crystallization is often used as a method to recover the amino acid. Due to the amphoteric character (contains both acidic and basic groups) of amino acids, their solubility is greatly influenced by the pH of the solution and usually show minima at the isoelectric point (zero net charge). • Since temperature also influences the solubility of amino acids and their salts, lowering the temperature can be used in advance as a means of obtaining the required product. • Precipitation of amino acids with salts, like ammonium and calcium salts, and with metals like zinc are also commonly used.
  • 20. Ion exchange • resins have been widely used for the extraction and purification of amino acids from the fermentation broth. • The adsorption of amino acids by ion exchange resinsis strongly affected by the pH of the solution and by the presence of contaminant ions. • There are two types of ion exchange resins; cation exchange resins and anion exchange resins. • Cation exchange resins bind positively charged amino acids (this is in the situation where the pH of the solution is lower then the isoelectric point (IEP) of the amino acid),
  • 21. • whereas anion exchange resins bind negatively charged amino acids (pH of the solution is higher than IEP). • Extraction of the bound amino acid(s) is done by introducing a solution containing the counterion of the resin. • • Anion exchange resins are generally lower in their exchange capacity and durability than cation exchange resins and are seldom used for industrial separation. • In general, ion exchange as a tool for separation is only used when other steps fail, because of its tedious operation, small capacity and high costs
  • 22.
  • 23. According to the findings of the scientific panel of the PFA, Chinese salt contains Monosodium glutamate (MSG) which can cause headaches, fatigue, palpitations, nausea and vomiting, sweating, flushing and numbness of the face, more so among people who are sensitive to it. It can also cause hypertension and is extremely hazardous for pregnant women, the panel found. According to some reports, regular use of this ingredient can cause long- term issues like high blood pressure, autism, hormonal imbalance, epilepsy, food allergies, asthma, reduction in bile formation, cancer and possible sterility in females.