SlideShare uma empresa Scribd logo
1 de 40
Lecture for the Induction Ceremony
to the Engineering Academy of Mexico
From force-based to displacement-based
seismic design. What comes next?
Michael N. Fardis
Buildings and bridges
move - and collapse -
sideways in earthquakes
Bridges move – and may
collapse - sideways in
earthquakes
Early-days belief:
Structures can avoid sideways collapse in a strong
earthquake, if designed to resist horizontal forces
How strong should these forces be?
• Earthquakes induce accelerations → forces fraction of the weight(s).
• How high a fraction? On the basis of early ground acceleration
measurements and of what is feasible: few percent (5%, 10%, 20%)
• Conclusion from later measurements: Accelerations much higher than
originally thought → lateral forces 50% to 100% of weight!
• Unfeasible to design structures for such a lateral force resistance.
• Early conclusion: keep magnitude of forces low – rationalize choice:
• No need of structure to stay elastic under design earthquake→ design
for a fraction, R, of force they would had felt, had they stayed elastic.
• R: (empirical)“force-reduction” factor; (arbitrary) values: ~3 to 10
Present-day: Force-based design for ductility
• Linear-elastic analysis (often linear dynamic analysis of sophisticated
computer model in 3D) for the lateral forces induced by earthquake
R-times (i.e., ~3-10-times) less than the design earthquake.
• Design calculations apply only up to 1/R of the design earthquake.
• Rationalization: Suffices to replace proportioning for the full design
earthquake with detailing of structure to sustain (through “ductility”)
inelastic deformations ~R-times those due to its elastic design forces.
• Basis: “Equal-displacement rule”: empirical observation that
earthquakes induce inelastic displacements ~equal to those induced
in a R-times stronger structure which would have stayed elastic.
Force-based seismic design
Pros:
• Force-based loadings: familiar to designers.
• Solid basis: Equilibrium (if met, we are not too far off).
• Analysis results easy to combine with those due to
gravity.
• Lessons from earthquakes: calibration of R-values.
Cons:
• Performance under the design earthquake: ~Unknown.
• No physical basis: Earthquakes don’t produce forces on
structures; they generate displacements and impart
energy. The forces are the off-spring of displacements,
not their cause, and sum up to the structure’s lateral
resistance, no matter the earthquake.
• Lateral forces don’t bring down the structure; lateral
displacements do, acting with the gravity loads (P-Δ).
“Equal-displacement rule”
0 Dmax
D
F
If it applies:
earthquake
induces same peak
displacement, no
matter the lateral
force resistance
Applies Does not apply
Peak-inelastic-to-peak-elastic-displacement (for various
force-deformation laws, from elastoplastic to pinching)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.0 0.5 1.0 1.5 2.0 2.5
average(Umax/Sd)
period,T (sec)
R=2 R=3
R=4 R=5
R=6 R=7
R=8
Design checks (“Verification format”):
• Force-based design (FBD):
Internal force or moment demand < force or moment
resistance
• Displacement-based design (DBD):
Deformation (eg, chord rotation) demand < Cyclic
deformation capacity
Displacement-based design (DBD)
• Concept and procedure:
Moehle JP (1992) Displacement-based design of RC structures
subjected to earthquakes Earthq. Spectra 8(3): 403-428.
• Priestley MJN (1993) Myths and fallacies in earthquake engineering -
conflicts between design and reality T. Paulay Symp.: Recent
developments in lateral force transfer in buildings La Jolla, CA:
– “Direct” DBD: Displacements estimated iteratively with Shibata’s
“Substitute Structure”, which has the secant stiffness to the peak
response point (a step up in displacement) and the associated
damping (a step down). In the end, design is force-based:
displacement demands converted to forces for member
proportioning.
• US approach (FEMA, ASCE):
– Displacement demands by “coefficient method”: Elastic estimates
times (up to four) coefficients, accounting for special features of
the motion or the system.
Displacement-Based Assessment in Eurocode 8
(2005) & Displacement-Based Design in Model Code
2010 of fib (Intern. Association Structural Concrete)
• Displacement measure: Chord rotations at member ends.
• Members proportioned for non-seismic loadings – re-proportioned/
detailed so that their chord-rotation capacities match seismic demands
from 5%-damped elastic analysis with secant-to-yield-point stiffness
– Fardis MN, Panagiotakos TB (1997) Displacement-based design of RC buildings:
Proposed approach and application, in “Seismic Design Methodologies for the Next
Generation of Codes” (P Fajfar, H Krawinkler, eds.), Balkema, 195-206.
– Panagiotakos TB, Fardis MN (1998) Deformation-controlled seismic design of RC
structures, Proc. 11th European Conf. Earthq. Eng. Paris.
– Panagiotakos TB, Fardis MN (1999a) Deformation-controlled earthquake resistant
design of RC buildings J. Earthq. Eng. 3: 495-518
– Panagiotakos TB, Fardis MN (2001) A displacement-based seismic design procedure
of RC buildings and comparison with EC8 Earthq. Eng. Struct. Dyn. 30: 1439-1462.
– Bardakis VG, Fardis MN (2011) A displacement-based seismic design procedure for
concrete bridges having deck integral with the piers Bull. Earthq. Eng. 9: 537-560
Displacement-Based Assessment in Eurocode 8 (2005)
& Displacement-Based Design in Model Code 2010 of
fib (Intern. Association of Structural Concrete) (cont’d)
– Economou SN, Fardis MN, Harisis A (1993) Linear elastic v nonlinear dynamic
seismic response analysis of RC buildings EURODYN '93, Trondheim, 63-70
– Panagiotakos TB, Fardis MN (1999) Estimation of inelastic deformation demands
in multistory RC buildings Earthq. Eng. Struct. Dyn. 28: 501-528
– Kosmopoulos A, Fardis MN (2007) Estimation of inelastic seismic deformations in
asymmetric multistory RC buildings Earthq. Eng. Struct. Dyn. 36: 1209-1234
– Bardakis VG, Fardis MN (2011) Nonlinear dynamic v elastic analysis for seismic
deformation demands in concrete bridges having deck integral with the piers.
Bull. Earthq. Eng. 9: 519-536
• Member chord-rotation demands from
linear-elastic analysis with 5%
damping, unmodified by “coefficients”
– If applicability conditions not met:
nonlinear static (pushover) or dynamic
(response history) analysis.
θ: rotation with respect to
chord connecting two ends at
displaced position
Elastic stiffness:
Controls natural periods of elastic structure and apparent
periods of nonlinear response
•For seismic design of new buildings:
– EI=50% of uncracked section stiffness overestimates by ~2 realistic
secant-to-yield-point stiffness;
• overestimates force demands (safe-sided in force-based design);
• underestimates displacement demands.
•For displacement-based design or assessment
– EI= Secant stiffness to yield point of end section.
EI = MyLs/3y
– Effective stiffness of shear span Ls
– Ls=M/V (~Lcl/2 in beams/columns, ~Hw/2 in cantilever walls),
– My, θy: moment & chord rotation at yielding;
– Average EI of two member ends in positive or negative bending.
Displacement-Based Assessment in Eurocode 8 (2005)
& Displacement-Based Design in Model Code 2010 of
fib (Intern. Association of Structural Concrete) (cont’d)
• Member chord-rotation capacity (from member geometry & materials)
 at yielding (to limit damage & allow immediate re-use);
 at “ultimate” conditions, conventionally identified with >20% drop
in moment resistance (to prevent serious damage & casualties).
– Panagiotakos TB, Fardis MN (2001) Deformations of RC members at yielding and
ultimate. ACI Struct. J. 98(2): 135-148.
– Biskinis D, Fardis MN (2007) Effect of lap splices on flexural resistance and cyclic
deformation capacity of RC members Beton- Stahlbetonbau, Sond. Englisch 102
– Biskinis D, Fardis MN (2010a) Deformations at flexural yielding of members with
continuous or lap-spliced bars. Struct. Concr. 11(3): 127-138.
– Biskinis D, Fardis MN (2010b) Flexure-controlled ultimate deformations of
members with continuous or lap-spliced bars. Struct. Concr. 11(2): 93-108.
• Member cyclic shear resistance after flexural yielding.
– Biskinis D, Roupakias GK, Fardis MN (2004) Degradation of shear strength of RC
members with inelastic cyclic displacements ACI Struct. J. 101(6): 773-783
Next generation of codes (and models): Displacement-
Based Design, Assessment or Retrofitting in Eurocode
8 (2020) & Model Code 2020 of fib
• Member chord-rotation at yielding and at “ultimate” conditions
– Grammatikou S, Biskinis D, Fardis MN (2016) Ultimate strain criteria for RC
members in monotonic or cyclic flexure ASCE J. Struct. Eng. 142(9)
– Grammatikou S, Biskinis D, Fardis MN (2018) Effective stiffness and ultimate
deformation of flexure-controlled RC members, including the effects of load cycles,
FRP jackets and lap-splicing of longitudinal bars ASCE J. Struct. Eng. (accepted)
– Grammatikou S, Biskinis D, Fardis MN (2017) Flexural rotation capacity models
fitted to test results using different statistical approaches Struct. Concrete DOI:
10.1002/suco.201600238 (online, Aug. 29, 2017).
– Grammatikou S, Biskinis D, Fardis MN (2017c) Models for the flexure-controlled
strength, stiffness and cyclic deformation capacity of concrete columns with
smooth bars, including lap-splicing and FRP jackets Bull. Earthq. Eng. DOI:
0.1007/s10518-017-0202-y (online, Aug. 4, 2017).
• Cyclic shear resistance of walls after flexural yielding.
– Grammatikou S, Biskinis D, Fardis MN (2015) Strength, deformation capacity and
failure modes of RC walls under cyclic loading Bull. Earthq. Eng. 13: 3277-3300
New models, from database of ~4200 tests
• Seamless portfolio of physical models for the stiffness and the flexure-
controlled cyclic deformation capacity of RC members:
– “conforming” to design codes or not, with continuous or lap-spliced
deformed bars, with or without fiber-reinforced polymer (FRP) wraps;
– “non-conforming”, with continuous or lap-spliced plain bars (with hooked
or straight ends), with or without FRP wraps.
• Portfolio of empirical models for the flexure-controlled cyclic
deformation capacity of the above types of members, but only for
sections consisting of one or more rectangular parts.
• Models for the cyclic shear resistance as controlled by:
– Yielding of transverse reinforcement in a flexural plastic hinge;
– Web diagonal compression in walls or short columns;
– Yielding of longitudinal & transverse web reinforcement in squat walls
– Shear sliding at the base of walls after flexural yielding;
• Models for the unloading stiffness and – through it – energy
dissipation in cyclic loading.
Test-vs-prediction & their ratio, for secant-to-yield-point stiffness
0 1000 2000 3000 4000 5000 6000
0
1000
2000
3000
4000
5000
6000
EI
eff,exp
[MNm2]
EIeff,pred
[MNm2
]
Median:
EIeff,exp
=0.99EIeff,pred
Mean:EIeff,exp
=1.08EIeff,pred
rectangular
non-rectangular
0 1000 2000 3000
0
1000
2000
3000
EI
eff,exp
[MNm2]
EIeff,pred
[MNm2
]
Median:
EIeff,exp
=EIeff,pred
Mean:EIeff,exp
=1.04EIeff,pred
0 50 100 150 200 250 300
0
50
100
150
200
250
300
EIeff,exp
[MNm
2
]
EI
eff,pred
[MNm
2
]
Median:
EIeff,exp
=0.985EIeff,pred
Mean:EIeff,exp
=0.99EIeff,pred
0 20 40 60 80 100 120
0
20
40
60
80
100
120
EIeff,exp
[MNm
2
]
EI [MNm
2
]
Median:
EIeff,exp
=0.91EIeff,pred
Mean:EIeff,exp
=0.95EIeff,pred
0 100 200 300 400 500 600
0
100
200
300
400
500
600
EI
eff,exp
[MNm2]
EIeff,pred
[MNm2
]
Median:
EIeff,exp
=1.01EIeff,pred
Mean:EIeff,exp
=1.06EIeff,pred
Members with continuous deformed bars (~2700 tests)
~1800 Rect. beam/columns ~300 Circular Columns ~600 Walls, box piers
CoV 37% CoV 31% CoV 40%
Members with lap-spliced deformed bars (>140 tests)
>40 Circ. Columns
>100 Rect. beam/columns CoV 21%
CoV 24%
Test-vs-prediction & their ratio, for secant-to-yield-point stiffness (cont’d)
0 50 100 150 200 250 300
0
50
100
150
200
250
300
EIeff,exp
[MNm
2
]
EI
eff,pred
[MNm
2
]
Median:
EIeff,exp
=0.985EIeff,pred
Mean:EIeff,exp
=0.99EIeff,pred
0 20 40 60 80 100 120
0
20
40
60
80
100
120
EIeff,exp
[MNm
2
]
EI
eff,pred
[MNm
2
]
Median:
EIeff,exp
=0.91EIeff,pred
Mean:EIeff,exp
=0.95EIeff,pred
0 50 100 150 200 250 300 350
0
50
100
150
200
250
300
350
EIeff,exp
[MNm
2
]
EI
eff,pred
[MNm
2
]
Median:
EIeff,,exp
=0.99EIeff,pred
Mean:EIeff,exp
=1.02EIeff,pred
non predamaged
predamaged
0 10 20 30 40 50 60 70 80 90
0
10
20
30
40
50
60
70
80
90
EIeff,exp
[MNm
2
]
EI
eff,pred
[MNm
2
]
Mean:
EIeff,,exp
=1.12EIeff,pred
Median:EIeff,exp
=1.15EIeff,pred
non predamaged
predamaged
~160 undamaged rect. columns
median=0.99, CoV=29%
(22 pre-damaged ones
median=0.68, CoV=25%)
~50 undamaged circ. columns
median=1.15, CoV=22%
(5 pre-damaged ones
mean=1.06, CoV=25%)
Members with continuous deformed bars & FRP wraps (~240 tests)
Members with lap-spliced deformed bars & FRP wraps (~85 tests)
~50 Rect. beam/columns
Median=0.98
CoV 23%
~35 Circ. Columns
median=0.91
CoV 18%
0 2.5 5 7.5 10 12.5 15
0
2.5
5
7.5
10
12.5
15
EI
eff,exp
[MN]
EIeff,pred
[MN]
Median:
EIeff,exp
=0.98EIeff,pred
Mean:EIeff,exp
=0.97EIeff,pred
w ithout FRP s
w ith FRP s
0 2.5 5 7.5 10 12.5 15
0
2.5
5
7.5
10
12.5
15
EI
eff,exp
[MN]
EI [MN]
Mean:
EIeff,exp
=EIeff,pred
Mean:EIeff,exp
=1.04EIeff,pred
continuous bars
lapped bars
18 cantilevers w/
FRP & cont. bars
CoV 26%
10 cantilevers w/
FRPs & hooked laps
CoV 16%
20 cantilevers
straight laps CoV 46%
4 cantilevers w/
FRP & straight laps: CoV 18%
0 2 4 6 8 10 12 14 16 18
0
2
4
6
8
10
12
14
16
18
EI
eff,exp
[MN]
EIeff,pred
[MN]
Median:
EIeff,exp
=1.08EIeff,pred
Median:EIeff,exp
=1.20EIeff,pred
continuous bars
lapped bars
0 2 4 6 8 10 12 14
0
2
4
6
8
10
12
14
EI
eff,exp
[MN]
EIeff,pred
[MN]
Median:
EIeff,exp
=0.98EIeff,pred
Mean:EIeff,exp
=1.01EIeff,pred
~85 cantilevers w/
cont. bars
CoV 36%
~30 cantilevers w/
hooked laps
CoV 25%
10 doubly fixed
w/ cont. bars
CoV 29%
Test-vs-prediction & their ratio, for secant-to-yield-point stiffness (cont’d)
Rect. columns with continuous or lap-spliced plain bars (~125 tests)
(~50) FRP-wrapped rect. columns – continuous or lapped plain bars
•
Test-vs-predicted ultimate chord-rotation & their ratio – physical model
0 2 4 6 8 10 12 14
0
2
4
6
8
10
12
14
u,exp
[%]

u,pred
[%]
Median:
u,exp
=u,pred
Mean:u,exp
=1.1u,pred
beams & columns
rect. w alls
non-rect. sections
0 2 4 6 8
0
2
4
6
8
u,exp
[%]

u,pred
[%]
Median:
u,exp
=u,pred
Mean:u,exp
=1.01u,pred
0 3 6 9 12 15
0
5
10
15
u,exp
[%]

u,pred
[%]
Median:
u,exp
=u,pred
Mean:u,exp
=1.06u,pred
0 1 2 3 4 5
0
1
2
3
4
5
u,exp
[%]

u,pred
[%]
Median:u,exp
=u,pred
Mean:u,exp
=1.08u,pred
0 2 4 6 8 10 12 14 16
0
2
4
6
8
10
12
14
16

u,exp
[%]

u,pred
[%]
Median:u,exp
=0.98u,pred
Mean:u,exp
=1.06u,pred
beams & columns
rect. walls
non-rect. sections
~100 rect. columns
CoV=42%
~50 circ. columns
CoV=30%
Members with continuous deformed bars
~1200 conforming, non-circular CoV 45% ~150 Circ. columns CoV 35%
~50 non-conforming CoV 35%
Members with lap-spliced deformed bars
yuslip
s
pl
plyu
pl
u
L
L
L 







,
2
1)( 

Test-vs-predicted ultimate chord-rotation & their ratio – physical model (cont’d)
0 2 4 6 8 10
0
2
4
6
8
10

u,exp
[%]

u,pred
[%]
Median:u,exp
=u,pred
Mean:u,exp
=0.97u,pred
0 2 4 6 8 10 12 14 16
0
2
4
6
8
10
12
14
16

u,exp
[%]

u,pred
[%]
Median:u,exp
=1.01u,pred
Mean:u,exp
=1.07u,pred
0 4 8 12 16 20 24
0
4
8
12
16
20
24
u,exp
[%]

u,pred
[%]
Median:
u,exp
=1.01u,pred
Mean:u,exp
=1.13u,pred
0 4 8 12 16 20 24
0
4
8
12
16
20
24
u,exp
[%]

u,pred
[%]
Median:
u,exp
=0.99u,pred
Mean:u,exp
=1.03u,pred
130 rect. Columns
CoV=36%
Members with continuous deformed bars and FRP wrapping
Members with lap-spliced deformed bars and FRP-wrapping
~50 Rect. beam/columns
CoV 35%
35 circ. columns
CoV 31%
~30 circ. Columns
CoV=22%
Test-vs-predicted ultimate chord-rotation & their ratio– empirical model
0 2 4 6 8 10 12 14
0
2
4
6
8
10
12
14
u,exp
[%]

u,pred
[%]
Median:
u,exp
=u,pred
Mean:u,exp
=1.05u,pred
beams & columns
rect. w alls
non-rect. sections
0 2 4 6 8 10 12 14 16
0
2
4
6
8
10
12
14
16

u,exp
[%]

u,pred
[%]
Median:
u,exp
=u,pred
Mean:u,exp
=1.06u,pred
beams & columns
rect. walls
non-rect. sections
~1200 conforming non-circular
CoV=38%
~50 non-conforming
CoV=30%
0 2 4 6 8 10 12 14 16
0
2
4
6
8
10
12
14
16

u,exp
[%]

u,pred
[%]
Median:
u,exp
=u,pred
Mean:u,exp
=1.06u,pred
beams & columns
rect. walls
non-rect. sections
~100 rect. columns
CoV=46%
0 4 8 12 16 20 24
0
4
8
12
16
20
24
u,exp
[%]

u,pred
[%]
Median:
u,exp
=u,pred
Mean:u,exp
=1.04u,pred
130 FRP-wrapped non-circular
CoV=32%
0 2 4 6 8 10
0
2
4
6
8
10

u,exp
[%]

u,pred
[%]
Median:u,exp
=0.83u,pred
Mean:u,exp
=0.9u,pred
~50 FRP-wrapped rect. columns
CoV=30%
Members with continuous deformed bars
Members with lap-spliced deformed bars
0 2 4 6 8 10 12
0
2
4
6
8
10
12
u,exp
[%]

u,pred
[%]
Median:
u,exp
=u,pred
Median:u,exp
=1.04u,pred
continuous bars
lapped bars
0 0.5 1 1.5 2 2.5 3 3.5 4
0
1
2
3
4
u,exp
[%]

u,pred
[%]
Mean:
u,exp
=0.99u,pred
Median:u,exp
=0.98u,pred
0 2 4 6 8 10 12
0
2
4
6
8
10
12
u,exp
[%]

u,pred
[%]
Median:
u,exp
=0.99u,pred
Median:u,exp
=u,pred
continuous bars
lapped bars
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.5
1
1.5
2
2.5
3
3.5
4
u,exp
[%]

u,pred
[%]
Mean:
u,exp
=0.93u,pred
Median:u,exp
=0.98u,pred
~55 cantilevers, cont. bars
← Physical model CoV 46%
Empirical model CoV 34%→
~20 cantilevers, hooked laps
← Physical model CoV 43%
Empirical model CoV 45% →
10 doubly fixed columns, cont. bars
← Physical model CoV 14%
Empirical model CoV 14%→
Test-vs-predicted ultimate chord-rotation of members with plain bars & their
ratio – physical v empirical model
0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9
u,exp
[%]

u,pred
[%]
Mean:
u,exp
=0.99u,pred
Mean:u,exp
=u,pred
continuous bars
lapped bars
0 1 2 3 4 5
0
1
2
3
4
5
u,exp
[%]

u,pred
[%]
Mean:
u,exp
=1.05u,pred
Mean:u,exp
=1.03u,pred
w ithout FRP s
w ith FRP s
0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9
u,exp
[%]

u,pred
[%]
Mean:
u,exp
=0.97u,pred
Mean:u,exp
=1.01u,pred
continuous bars
lapped bars
0 1 2 3 4 5
0
1
2
3
4
5
u,exp
[%]

u,pred
[%]
Mean:
u,exp
=0.93u,pred
Median:u,exp
=1.05u,pred
w ithout FRP s
w ith FRP s
14 cantilevers, cont. bars,FRPs
← Physical model CoV 45%
Empirical model CoV 35%→
9 cantilevers, hooked laps, FRPs
← Physical model CoV 22%
Empirical model CoV 32% →
19 cantilevers, straight laps
← Physical model CoV 45%
Empirical model CoV 50%→
4 cantilevers, straight laps, FRPs
← Physical model CoV 24%
Empirical model CoV 22%→
Test-vs-predicted ultimate chord-rotation of members with plain bars &
their ratio – physical v empirical model (cont’d)
0
500
1000
1500
2000
2500
3000
0 500 1000 1500 2000 2500 3000
VR,exp(kN)
VR,pred (kN)
median:VR,exp=1.01VR,pred
0
500
1000
1500
2000
2500
3000
3500
0 500 1000 1500 2000 2500 3000 3500
VR,exp[kN]
VR,pred [kN]
rectangular section
non-rectangular section
median: VR,exp= VR,pred
0
200
400
600
800
1000
0 200 400 600 800 1000
Vexp(kN)
Vpred (kN)
Rectangular
Circular
walls & piers
“Short” columns
(Ls/h ≤ 2)
~ 90 tests, CoV=12%
Diagonal compression
7 rect. & 55 non-rect. walls,
CoV=14%
Diagonal tension failure of plastic hinge
~205 rect. beams/columns, ~75 circ. columns ~40
rect. & ~55 non-rect. walls or box sections, all with
4.1≥Ls/h>1.0, CoV=17%
Cyclic shear resistance (after
flexural yielding)
Test-vs-prediction & their ratio
0
500
1000
1500
2000
2500
0 500 1000 1500 2000 2500
VR,exp[kN]
V [kN]
rectangular section
non-rectangular section
median: VR,exp = 1.01 VR,pred
0
500
1000
1500
2000
2500
0 500 1000 1500 2000 2500
VR,exp[kN]
V [kN]
rectangular section
non-rectangular section
median: VR,exp = 0.99VR,pred
fib MC2010-based, CoV=34% ACI318-based, CoV=32% Eurocode 8-based, CoV=31%
0
500
1000
1500
2000
2500
0 500 1000 1500 2000 2500
VR,exp[kN]
V [kN]
rectangular section
non-rectangular section
median: VR,exp =0.98VR,pred
0
500
1000
1500
2000
2500
3000
0 500 1000 1500 2000 2500 3000
VR,exp[kN]
VR,pred [kN]
rectangular section
non-rectangular section
median:VR,exp=
1,01VR,pred
0
1000
2000
3000
4000
5000
6000
7000
0 1000 2000 3000 4000 5000 6000 7000
VR,exp[kN]
VR,pred [kN]
non-rectangular section
rectangular section
median:
VR,exp=1,01VR,pred
Physical model,
CoV=29%
Empirical model,
CoV=22%
~95 rect. & ~235 non-rect.
“squat” walls (1.2 ≥ Ls/h )
Cyclic shear resistance after flexural yielding (cont’d)
~30 rect. & ~25 non-rect.
walls in sliding shear
Simulation of 2-directional SPEAR building tests
Torsionally imbalanced Greek building of the ‘60s; no engineered earthquake-resistance
• eccentric beam-column connections;
• plain/hooked bars lap-spliced at floor levels;
• (mostly) weak columns, strong beams.3.0 5.0
5.5
5.0
6.0
4.0
1.0
1.70
Unretrofitted building: Pseudodynamic tests at PGA 0.15g & 0.2g
Fiber-Reinforced Polymer (FRP) retrofitting. Test at PGA 0.2g
• Ends of 0.25 m-square columns
wrapped in uni-directional Glass FRP
over 0.6 m from face of joint.
• Full-height wrapping of 0.25x0.75 m
column in bi-directional Glass FRP for
confinement & shear.
• Bi-directional Glass FRP applied on
exterior faces of corner joints
RC-jacketing of two columns. Tests at PGA 0.2g & 0.3g
• FRP wrapping of all columns removed.
• RC jacketing of central columns on two adjacent flexible sides from
0.25 m- to 0.4 m-square, w/ eight 16 mm-dia. bars & 10 mm
perimeter ties @ 100 mm centres.
-0,04
-0,03
-0,02
-0,01
0
0,01
0,02
0,03
0,04
0,05
0,06
Xdisplacement(m)
RC jacket retrofitting 0.3g test
analysis
-0,04
-0,03
-0,02
-0,01
0
0,01
0,02
0,03
0,04
0,05
0,06
Zdisplacement(m)
RC jacket retrofitting 0.3g test
analysis
-0,03
-0,02
-0,01
0
0,01
0,02
0,03
Xdisplacement(m)
RC jacket retrofitting 0.2g
test
analysis
-0,03
-0,02
-0,01
0
0,01
0,02
0,03
Zdisplacement(m)
RC jacket retrofitting 0.2g test
analysis
-0,04
-0,035
-0,03
-0,025
-0,02
-0,015
-0,01
-0,005
0
0,005
0,01
0,015
0,02
0,025
0,03Xdisplacement(m)
FRP-Retrofitted 0.2g
test
analysis
-0,04
-0,035
-0,03
-0,025
-0,02
-0,015
-0,01
-0,005
0
0,005
0,01
0,015
0,02
0,025
0,03
Zdisplacement(m)
FRP-Retrofitted 0.2g
test
analysis
-0,03
-0,025
-0,02
-0,015
-0,01
-0,005
0
0,005
0,01
0,015
0,02
0,025
Xdisplacement(m)
0.2g test
analysis
-0,03
-0,025
-0,02
-0,015
-0,01
-0,005
0
0,005
0,01
0,015
0,02
0,025
Zdisplacement(m)
0.2g test
analysis
-0,02
-0,015
-0,01
-0,005
0
0,005
0,01
0,015
0,02
0,00 5,00 10,00 15,00 20,00
Xdisplacement(m)
Time (s)
0.15g test
analysis
-0,02
-0,015
-0,01
-0,005
0
0,005
0,01
0,015
0,02
0,00 5,00 10,00 15,00 20,00
Zdisplacement(m)
Time (s)
0.15g test
analysis
1st floor displacement
histories at Center of
Mass
-0,125
-0,1
-0,075
-0,05
-0,025
0
0,025
0,05
0,075
0,1
0,125
0,15Xdisplacement(m) RC jacket retrofitting 0.3g test
analysis
-0,125
-0,1
-0,075
-0,05
-0,025
0
0,025
0,05
0,075
0,1
0,125
0,15
Zdisplacement(m)
RC jacket retrofitting 0.3g test
analysis
-0,1
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
Xdisplacement(m)
RC jacket retrofitting 0.2g
test
analysis
-0,1
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
Zdisplacement(m)
RC jacket retrofitting 0.2g
test
analysis
-0,12
-0,1
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
0,1
0,12
0,14
Xdisplacement(m)
FRP-Retrofitted-0.2g test
analysis
-0,12
-0,1
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
0,1
0,12
0,14
Zdisplacement(m)
FRP-Retrofitted-0.2g
test
analysis
-0,12
-0,1
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
0,1
0,12
Xdisplacement(m)
0.2g test
analysis
-0,12
-0,1
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
0,1
0,12
Zdisplacement(m)
0.2g test
analysis
-0,1
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
0,1
0,00 5,00 10,00 15,00 20,00
Xdisplacement(m)
Time (s)
0.15g test
analysis
-0,1
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
0,1
0,00 5,00 10,00 15,00 20,00
Zdisplacement(m)
Time (s)
0.15g test
analysis
-0,1
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
0,1
0,12
Xdisplacement(m)
RC jacket retrofitting 0.3g
test
analysis
-0,1
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
0,1
0,12
Zdisplacement(m)
RC jacket retrofitting 0.3g test
analysis
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
Xdisplacement(m)
RC jacket retrofitting 0.2g
test
analysis
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
Zdisplacement(m)
RC jacket retrofitting 0.2g
test
analysis
-0,1
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
Xdisplacement(m)
FRP-Retrofitted 0.2g test
analysis
-0,1
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
Zdisplacement(m)
FRP-Retrofitted 0.2g
test
analysis
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
Xdisplacement(m)
0.2g test
analysis
-0,08
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,08
Zdisplacement(m)
0.2g test
analysis
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,00 5,00 10,00 15,00 20,00
Xdisplacement(m)
0.15g test
analysis
-0,06
-0,04
-0,02
0
0,02
0,04
0,06
0,00 5,00 10,00 15,00 20,00
Zdisplacement(m)
0.15g test
analysis
3rd floor 2nd floor
0.15g
0.20g
Chord-rotation-demand-to-ultimate-chord-rotation-ratio
Unretrofitted structure
Physical ult. chord
rotation model Empirical ult. chord rotation
FRP-retrofitted columns - 0.2g
RC jackets around two outer columns - 0.2g
RC jackets around two outer columns - 0.3g
Chord-rotation-demand-to-
ultimate-chord-rotation-ratio:
Retrofitted structure
Physical ult. chord
rotation model Empirical ult. chord rotation
Conclusions of Case Study of SPEAR test building
• Estimation of effective stiffness of members with plain bars lap-
spliced at floor levels validated by good agreement of predominant
periods of computed and recorded displacement waveforms in
unretrofitted, FRP-retrofitted or RC-jacketed building.
• Extent and location of damage in unretrofitted, FRP-retrofitted or RC-
jacketed test building agree better with physical model of ultimate
chord rotation than with empirical model.
For future: Energy-based seismic design (EBD)?
Pros:
• Energy balance (or conservation): a law of nature, as solid, familiar to
engineers and easy to apply as equilibrium.
• Input energy from an earthquake the per unit mass essentially
depends only on structure's fundamental period, no matter the
viscous damping ratio, the post-yield hardening ratio, the level of
inelastic action (ductility factor) and the number of degrees of
freedom - the equivalent of the "equal displacement rule".
• Forces, displacements: vectors, with components considered
separately in design. Response is better captured by a scalar, such as
energy.
• Energy embodies more damage-related-information than peak
displacements (number of cycles, duration).
• The evolution of the components of energy during a nonlinear
response-history analysis flags numerical instabilities or lack of
convergence.
The history of EBD
• Concept of seismic energy input and its potential first mentioned:
– Housner GW (1956) Limit design of structures to resist earthquakes.
Proc. 1st World Conf. Earthq. Eng. Berkeley, CA.
• Seminal publications drew attention to seismic energy 30 years later:
– Zahrah TF, Hall WJ (1984) Earthquake energy absorption in SDOF
structures ASCE J. Struct. Eng. 110(8): 1757-1772
– Akiyama H (1988) Earthquake-resistant design based on the energy
concept 9th World Conf. Earthq. Eng. Tokyo-Kyoto V: 905-910
– Uang CM, Bertero VV (1990) Evaluation of seismic energy in
structures Earthq. Eng. Struct. Dyn. 19: 77-90
• EBD considered, along with DBD, as the promising approach(es) for
Performance-based Seismic Design, in:
– SEAOC (1995) Performance Based Seismic Engineering of Buildings
VISION 2000 Committee, Sacramento, CA
• Boom of publications for ~20 to 25 years. Then effort run out of
steam and research output reduced to a trickle. No impact on codes.
• EBD was overtaken and sidelined by (its junior by 35 years) DBD.
EBD: State-of-the-Art and challenges
• The State-of-the-Art is quite advanced and has reached a satisfactory
level, only concerning the seismic energy input:
– Shape and dependence of seismic energy input spectra on
parameters are fully understood and described.
– Attenuation equations of seismic energy input with distance from
the source have also been established.
• The distribution of the energy input within the structure (height- and
plan-wise) and its breakdown into types of energy (kinetic, stored as
deformation energy – recoverable or not – and dissipated in viscous
and hysteretic ways) has been studied, but certain hurdles remain:
– Global Rayleigh-type viscous damping produces fictitious forces and
misleading predictions of the inelastic response. Replace with
elemental damping, preferably of the hysteretic type alone?
– Potential energy of weights supported on rocking vertical elements:
important – yet presently ignored - component of energy balance.
• The energy capacity side is the most challenging aspect, but remains
a terra incognita, as it has not been addressed at all yet.
EBD: needs, potential and prospects
• Major achievements of the past concerning the seismic input energy
and the progress so far regarding other aspects of the demand side,
will all be wasted, and an opportunity for a new road to performance-
based earthquake engineering will be missed, unless:
– A concerted effort is undertaken on the analysis side to resolve the
issue of modeling energy dissipation and to find an easy way to
account for the variation in the potential energy of weights
supported on large rocking elements, such as concrete walls of
significant length (a geometrically nonlinear problem).
– The capacity of various types of elements to dissipate energy by
hysteresis and to safely store deformation energy is quantified in
terms of their geometric features and material properties.
– Energy-based design procedures are devised and applied on a pilot
basis, leading to a new, energy-based conceptual design thinking.
• The (distant) goal (of the ‘30s, rather than of the ‘20s) should be the
infiltration of codes of practice and seismic design standards. The
most promising region for it is Europe, as its academics exert larger
influence on code-drafting than in other parts of the world.

Mais conteúdo relacionado

Mais procurados

CE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsCE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsFawad Najam
 
Book for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABSBook for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABSYousuf Dinar
 
INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...
INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...
INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...SJ BASHA
 
Seismic Analysis of regular & Irregular RCC frame structures
Seismic Analysis of regular & Irregular RCC frame structuresSeismic Analysis of regular & Irregular RCC frame structures
Seismic Analysis of regular & Irregular RCC frame structuresDaanish Zama
 
CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...
CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...
CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...Fawad Najam
 
Non linear static pushover analysis
Non linear static pushover analysisNon linear static pushover analysis
Non linear static pushover analysisjeyanthi4
 
Progression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed AnwarProgression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed AnwarAIT Solutions
 
Soil Structure Interaction.ppt
Soil Structure Interaction.pptSoil Structure Interaction.ppt
Soil Structure Interaction.pptHector333285
 
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...Rahul Leslie
 
Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)
Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)
Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)Ramil Artates
 
Ch 1 structural analysis stiffness method
Ch 1 structural analysis stiffness methodCh 1 structural analysis stiffness method
Ch 1 structural analysis stiffness method280632796
 
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionCE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionFawad Najam
 
Seismic Analysis of Structures - III
Seismic Analysis of Structures - IIISeismic Analysis of Structures - III
Seismic Analysis of Structures - IIItushardatta
 
Analysis and design of pre engineered building using is 800:2007 and Internat...
Analysis and design of pre engineered building using is 800:2007 and Internat...Analysis and design of pre engineered building using is 800:2007 and Internat...
Analysis and design of pre engineered building using is 800:2007 and Internat...Pratik R. Atwal
 
CE 72.52 - Lecture 8a - Retrofitting of RC Members
CE 72.52 - Lecture 8a - Retrofitting of RC MembersCE 72.52 - Lecture 8a - Retrofitting of RC Members
CE 72.52 - Lecture 8a - Retrofitting of RC MembersFawad Najam
 
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria Fawad Najam
 
Etabs example-rc building seismic load response-
Etabs example-rc building seismic load  response-Etabs example-rc building seismic load  response-
Etabs example-rc building seismic load response-Bhaskar Alapati
 

Mais procurados (20)

CE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsCE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie Models
 
Book for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABSBook for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABS
 
INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...
INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...
INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...
 
Seismic Analysis of regular & Irregular RCC frame structures
Seismic Analysis of regular & Irregular RCC frame structuresSeismic Analysis of regular & Irregular RCC frame structures
Seismic Analysis of regular & Irregular RCC frame structures
 
CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...
CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...
CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...
 
Non linear static pushover analysis
Non linear static pushover analysisNon linear static pushover analysis
Non linear static pushover analysis
 
Progression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed AnwarProgression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed Anwar
 
Etabs acecoms rcc structure design
 Etabs acecoms rcc structure design Etabs acecoms rcc structure design
Etabs acecoms rcc structure design
 
Soil Structure Interaction.ppt
Soil Structure Interaction.pptSoil Structure Interaction.ppt
Soil Structure Interaction.ppt
 
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
 
Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)
Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)
Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)
 
253283568 stm
253283568 stm253283568 stm
253283568 stm
 
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8 ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
 
Ch 1 structural analysis stiffness method
Ch 1 structural analysis stiffness methodCh 1 structural analysis stiffness method
Ch 1 structural analysis stiffness method
 
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionCE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
 
Seismic Analysis of Structures - III
Seismic Analysis of Structures - IIISeismic Analysis of Structures - III
Seismic Analysis of Structures - III
 
Analysis and design of pre engineered building using is 800:2007 and Internat...
Analysis and design of pre engineered building using is 800:2007 and Internat...Analysis and design of pre engineered building using is 800:2007 and Internat...
Analysis and design of pre engineered building using is 800:2007 and Internat...
 
CE 72.52 - Lecture 8a - Retrofitting of RC Members
CE 72.52 - Lecture 8a - Retrofitting of RC MembersCE 72.52 - Lecture 8a - Retrofitting of RC Members
CE 72.52 - Lecture 8a - Retrofitting of RC Members
 
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria
 
Etabs example-rc building seismic load response-
Etabs example-rc building seismic load  response-Etabs example-rc building seismic load  response-
Etabs example-rc building seismic load response-
 

Semelhante a From force-based to displacement-based seismic design. What comes next?

Study on Torsional Response of Irregualr Buildings Under Seismic Loading
Study on Torsional Response of Irregualr Buildings Under Seismic LoadingStudy on Torsional Response of Irregualr Buildings Under Seismic Loading
Study on Torsional Response of Irregualr Buildings Under Seismic LoadingIRJET Journal
 
Non-Linear Static (Pushover) Analysis of Irregular Building Systems
Non-Linear Static (Pushover) Analysis of Irregular Building SystemsNon-Linear Static (Pushover) Analysis of Irregular Building Systems
Non-Linear Static (Pushover) Analysis of Irregular Building SystemsIRJET Journal
 
Sesmic strengthining of multi storey building with soft storey week 2
Sesmic strengthining of multi storey building with soft storey  week 2Sesmic strengthining of multi storey building with soft storey  week 2
Sesmic strengthining of multi storey building with soft storey week 2SVMohtesham
 
IRJET- Seismic Analysis of a Tall Structure Considering X Type Bracings a...
IRJET-  	  Seismic Analysis of a Tall Structure Considering X Type Bracings a...IRJET-  	  Seismic Analysis of a Tall Structure Considering X Type Bracings a...
IRJET- Seismic Analysis of a Tall Structure Considering X Type Bracings a...IRJET Journal
 
Influence of Combine Vertical Irregularities in the Response of Earthquake Re...
Influence of Combine Vertical Irregularities in the Response of Earthquake Re...Influence of Combine Vertical Irregularities in the Response of Earthquake Re...
Influence of Combine Vertical Irregularities in the Response of Earthquake Re...IOSRJMCE
 
Study On Seismic Behaviour of Tall Irregular Buildings Under Influence of Non...
Study On Seismic Behaviour of Tall Irregular Buildings Under Influence of Non...Study On Seismic Behaviour of Tall Irregular Buildings Under Influence of Non...
Study On Seismic Behaviour of Tall Irregular Buildings Under Influence of Non...IRJET Journal
 
IRJET- Seismic Effects on Irregular Buildings- State of the Art
IRJET- Seismic Effects on Irregular Buildings- State of the ArtIRJET- Seismic Effects on Irregular Buildings- State of the Art
IRJET- Seismic Effects on Irregular Buildings- State of the ArtIRJET Journal
 
IRJET- Seismic Behavior of RC Flat Slab with and without Shear Wall Techn...
IRJET-  	  Seismic Behavior of RC Flat Slab with and without Shear Wall Techn...IRJET-  	  Seismic Behavior of RC Flat Slab with and without Shear Wall Techn...
IRJET- Seismic Behavior of RC Flat Slab with and without Shear Wall Techn...IRJET Journal
 
Study on Seismic Behaviour of RC Frame Vertically Asymmetrical Buildings
Study on Seismic Behaviour of RC Frame Vertically Asymmetrical BuildingsStudy on Seismic Behaviour of RC Frame Vertically Asymmetrical Buildings
Study on Seismic Behaviour of RC Frame Vertically Asymmetrical BuildingsIRJET Journal
 
Dynamic Response of High Rise Structures Under The Influence of Shear Walls
Dynamic Response of High Rise Structures Under The Influence of Shear WallsDynamic Response of High Rise Structures Under The Influence of Shear Walls
Dynamic Response of High Rise Structures Under The Influence of Shear WallsIJERA Editor
 
seismic response of multi storey building equipped with steel bracing
 seismic response of multi storey building equipped with steel bracing seismic response of multi storey building equipped with steel bracing
seismic response of multi storey building equipped with steel bracingINFOGAIN PUBLICATION
 
Seismic Analysis of Multi-Storey Structure Subjected To Different (1).pptx
Seismic  Analysis  of Multi-Storey Structure Subjected To Different (1).pptxSeismic  Analysis  of Multi-Storey Structure Subjected To Different (1).pptx
Seismic Analysis of Multi-Storey Structure Subjected To Different (1).pptxGoneJustin
 
ANALYSIS AND DESIGN OPTIMIZATION OF SHEAR-WALL IN CASE OF HIGH-RISE BUILDING ...
ANALYSIS AND DESIGN OPTIMIZATION OF SHEAR-WALL IN CASE OF HIGH-RISE BUILDING ...ANALYSIS AND DESIGN OPTIMIZATION OF SHEAR-WALL IN CASE OF HIGH-RISE BUILDING ...
ANALYSIS AND DESIGN OPTIMIZATION OF SHEAR-WALL IN CASE OF HIGH-RISE BUILDING ...IRJET Journal
 
Influence of Aspect Ratio & Plan Configurations on Seismic Performance of Mul...
Influence of Aspect Ratio & Plan Configurations on Seismic Performance of Mul...Influence of Aspect Ratio & Plan Configurations on Seismic Performance of Mul...
Influence of Aspect Ratio & Plan Configurations on Seismic Performance of Mul...IRJET Journal
 
Seismic protection variable stiffness part 2 poster
Seismic protection variable stiffness part 2 poster Seismic protection variable stiffness part 2 poster
Seismic protection variable stiffness part 2 poster Neofytos Theodorou
 
Seismic performance of r c buildings on sloping grounds with different types ...
Seismic performance of r c buildings on sloping grounds with different types ...Seismic performance of r c buildings on sloping grounds with different types ...
Seismic performance of r c buildings on sloping grounds with different types ...eSAT Journals
 
Dynamic Analysis of Multi-Storeyed Frame-Shear Wall Building Considering SSI
Dynamic Analysis of Multi-Storeyed Frame-Shear Wall Building Considering SSIDynamic Analysis of Multi-Storeyed Frame-Shear Wall Building Considering SSI
Dynamic Analysis of Multi-Storeyed Frame-Shear Wall Building Considering SSIIJERA Editor
 
Seismic Performance Assessment of RCS Building By Pushover Analysis
Seismic Performance Assessment of RCS Building By Pushover AnalysisSeismic Performance Assessment of RCS Building By Pushover Analysis
Seismic Performance Assessment of RCS Building By Pushover AnalysisIOSR Journals
 

Semelhante a From force-based to displacement-based seismic design. What comes next? (20)

Study on Torsional Response of Irregualr Buildings Under Seismic Loading
Study on Torsional Response of Irregualr Buildings Under Seismic LoadingStudy on Torsional Response of Irregualr Buildings Under Seismic Loading
Study on Torsional Response of Irregualr Buildings Under Seismic Loading
 
Non-Linear Static (Pushover) Analysis of Irregular Building Systems
Non-Linear Static (Pushover) Analysis of Irregular Building SystemsNon-Linear Static (Pushover) Analysis of Irregular Building Systems
Non-Linear Static (Pushover) Analysis of Irregular Building Systems
 
Sesmic strengthining of multi storey building with soft storey week 2
Sesmic strengthining of multi storey building with soft storey  week 2Sesmic strengthining of multi storey building with soft storey  week 2
Sesmic strengthining of multi storey building with soft storey week 2
 
IRJET- Seismic Analysis of a Tall Structure Considering X Type Bracings a...
IRJET-  	  Seismic Analysis of a Tall Structure Considering X Type Bracings a...IRJET-  	  Seismic Analysis of a Tall Structure Considering X Type Bracings a...
IRJET- Seismic Analysis of a Tall Structure Considering X Type Bracings a...
 
Influence of Combine Vertical Irregularities in the Response of Earthquake Re...
Influence of Combine Vertical Irregularities in the Response of Earthquake Re...Influence of Combine Vertical Irregularities in the Response of Earthquake Re...
Influence of Combine Vertical Irregularities in the Response of Earthquake Re...
 
Study On Seismic Behaviour of Tall Irregular Buildings Under Influence of Non...
Study On Seismic Behaviour of Tall Irregular Buildings Under Influence of Non...Study On Seismic Behaviour of Tall Irregular Buildings Under Influence of Non...
Study On Seismic Behaviour of Tall Irregular Buildings Under Influence of Non...
 
F012515059
F012515059F012515059
F012515059
 
IRJET- Seismic Effects on Irregular Buildings- State of the Art
IRJET- Seismic Effects on Irregular Buildings- State of the ArtIRJET- Seismic Effects on Irregular Buildings- State of the Art
IRJET- Seismic Effects on Irregular Buildings- State of the Art
 
IRJET- Seismic Behavior of RC Flat Slab with and without Shear Wall Techn...
IRJET-  	  Seismic Behavior of RC Flat Slab with and without Shear Wall Techn...IRJET-  	  Seismic Behavior of RC Flat Slab with and without Shear Wall Techn...
IRJET- Seismic Behavior of RC Flat Slab with and without Shear Wall Techn...
 
Study on Seismic Behaviour of RC Frame Vertically Asymmetrical Buildings
Study on Seismic Behaviour of RC Frame Vertically Asymmetrical BuildingsStudy on Seismic Behaviour of RC Frame Vertically Asymmetrical Buildings
Study on Seismic Behaviour of RC Frame Vertically Asymmetrical Buildings
 
Dynamic Response of High Rise Structures Under The Influence of Shear Walls
Dynamic Response of High Rise Structures Under The Influence of Shear WallsDynamic Response of High Rise Structures Under The Influence of Shear Walls
Dynamic Response of High Rise Structures Under The Influence of Shear Walls
 
seismic response of multi storey building equipped with steel bracing
 seismic response of multi storey building equipped with steel bracing seismic response of multi storey building equipped with steel bracing
seismic response of multi storey building equipped with steel bracing
 
Seismic Analysis of Multi-Storey Structure Subjected To Different (1).pptx
Seismic  Analysis  of Multi-Storey Structure Subjected To Different (1).pptxSeismic  Analysis  of Multi-Storey Structure Subjected To Different (1).pptx
Seismic Analysis of Multi-Storey Structure Subjected To Different (1).pptx
 
ANALYSIS AND DESIGN OPTIMIZATION OF SHEAR-WALL IN CASE OF HIGH-RISE BUILDING ...
ANALYSIS AND DESIGN OPTIMIZATION OF SHEAR-WALL IN CASE OF HIGH-RISE BUILDING ...ANALYSIS AND DESIGN OPTIMIZATION OF SHEAR-WALL IN CASE OF HIGH-RISE BUILDING ...
ANALYSIS AND DESIGN OPTIMIZATION OF SHEAR-WALL IN CASE OF HIGH-RISE BUILDING ...
 
Influence of Aspect Ratio & Plan Configurations on Seismic Performance of Mul...
Influence of Aspect Ratio & Plan Configurations on Seismic Performance of Mul...Influence of Aspect Ratio & Plan Configurations on Seismic Performance of Mul...
Influence of Aspect Ratio & Plan Configurations on Seismic Performance of Mul...
 
Seismic protection variable stiffness part 2 poster
Seismic protection variable stiffness part 2 poster Seismic protection variable stiffness part 2 poster
Seismic protection variable stiffness part 2 poster
 
Seismic performance of r c buildings on sloping grounds with different types ...
Seismic performance of r c buildings on sloping grounds with different types ...Seismic performance of r c buildings on sloping grounds with different types ...
Seismic performance of r c buildings on sloping grounds with different types ...
 
C046031318
C046031318C046031318
C046031318
 
Dynamic Analysis of Multi-Storeyed Frame-Shear Wall Building Considering SSI
Dynamic Analysis of Multi-Storeyed Frame-Shear Wall Building Considering SSIDynamic Analysis of Multi-Storeyed Frame-Shear Wall Building Considering SSI
Dynamic Analysis of Multi-Storeyed Frame-Shear Wall Building Considering SSI
 
Seismic Performance Assessment of RCS Building By Pushover Analysis
Seismic Performance Assessment of RCS Building By Pushover AnalysisSeismic Performance Assessment of RCS Building By Pushover Analysis
Seismic Performance Assessment of RCS Building By Pushover Analysis
 

Mais de Academia de Ingeniería de México

Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...Academia de Ingeniería de México
 
Ground deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructureGround deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructureAcademia de Ingeniería de México
 
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, RecyclableNew Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, RecyclableAcademia de Ingeniería de México
 
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...Academia de Ingeniería de México
 
Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...Academia de Ingeniería de México
 
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en MéxicoDesarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en MéxicoAcademia de Ingeniería de México
 
Desarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales NuclearesDesarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales NuclearesAcademia de Ingeniería de México
 
Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...Academia de Ingeniería de México
 
Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...Academia de Ingeniería de México
 
Proceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénicoProceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénicoAcademia de Ingeniería de México
 
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...Academia de Ingeniería de México
 
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...Academia de Ingeniería de México
 

Mais de Academia de Ingeniería de México (20)

Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
 
Nanoscale Properties of Biocompatible materials
Nanoscale Properties of Biocompatible materialsNanoscale Properties of Biocompatible materials
Nanoscale Properties of Biocompatible materials
 
Ground deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructureGround deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructure
 
Engineering the Future
Engineering the FutureEngineering the Future
Engineering the Future
 
Impact of Earthquaker Duration on Bridge Performance
Impact of Earthquaker Duration on Bridge PerformanceImpact of Earthquaker Duration on Bridge Performance
Impact of Earthquaker Duration on Bridge Performance
 
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, RecyclableNew Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
 
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
 
Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...
 
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en MéxicoDesarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
 
El mundo real y la interdisciplina
El mundo real y la interdisciplinaEl mundo real y la interdisciplina
El mundo real y la interdisciplina
 
Desarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales NuclearesDesarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales Nucleares
 
Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...
 
Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...
 
Modelo educativo para la industria 4.0
Modelo educativo para la industria 4.0Modelo educativo para la industria 4.0
Modelo educativo para la industria 4.0
 
Proceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénicoProceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénico
 
El camino real de la plata
El camino real de la plataEl camino real de la plata
El camino real de la plata
 
Importancia de la Geomecánica petrolera profunda
Importancia de la Geomecánica petrolera profundaImportancia de la Geomecánica petrolera profunda
Importancia de la Geomecánica petrolera profunda
 
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
 
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
 
Tecnología propietaria Vs Producto comercial, Caso PACS-INR
Tecnología propietaria Vs Producto comercial, Caso PACS-INRTecnología propietaria Vs Producto comercial, Caso PACS-INR
Tecnología propietaria Vs Producto comercial, Caso PACS-INR
 

Último

Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgsaravananr517913
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
Steel Structures - Building technology.pptx
Steel Structures - Building technology.pptxSteel Structures - Building technology.pptx
Steel Structures - Building technology.pptxNikhil Raut
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxRomil Mishra
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptNarmatha D
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptJasonTagapanGulla
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 

Último (20)

Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
Steel Structures - Building technology.pptx
Steel Structures - Building technology.pptxSteel Structures - Building technology.pptx
Steel Structures - Building technology.pptx
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptx
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.ppt
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.ppt
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 

From force-based to displacement-based seismic design. What comes next?

  • 1. Lecture for the Induction Ceremony to the Engineering Academy of Mexico From force-based to displacement-based seismic design. What comes next? Michael N. Fardis
  • 2. Buildings and bridges move - and collapse - sideways in earthquakes
  • 3. Bridges move – and may collapse - sideways in earthquakes
  • 4. Early-days belief: Structures can avoid sideways collapse in a strong earthquake, if designed to resist horizontal forces
  • 5. How strong should these forces be? • Earthquakes induce accelerations → forces fraction of the weight(s). • How high a fraction? On the basis of early ground acceleration measurements and of what is feasible: few percent (5%, 10%, 20%) • Conclusion from later measurements: Accelerations much higher than originally thought → lateral forces 50% to 100% of weight! • Unfeasible to design structures for such a lateral force resistance. • Early conclusion: keep magnitude of forces low – rationalize choice: • No need of structure to stay elastic under design earthquake→ design for a fraction, R, of force they would had felt, had they stayed elastic. • R: (empirical)“force-reduction” factor; (arbitrary) values: ~3 to 10
  • 6. Present-day: Force-based design for ductility • Linear-elastic analysis (often linear dynamic analysis of sophisticated computer model in 3D) for the lateral forces induced by earthquake R-times (i.e., ~3-10-times) less than the design earthquake. • Design calculations apply only up to 1/R of the design earthquake. • Rationalization: Suffices to replace proportioning for the full design earthquake with detailing of structure to sustain (through “ductility”) inelastic deformations ~R-times those due to its elastic design forces. • Basis: “Equal-displacement rule”: empirical observation that earthquakes induce inelastic displacements ~equal to those induced in a R-times stronger structure which would have stayed elastic.
  • 7. Force-based seismic design Pros: • Force-based loadings: familiar to designers. • Solid basis: Equilibrium (if met, we are not too far off). • Analysis results easy to combine with those due to gravity. • Lessons from earthquakes: calibration of R-values. Cons: • Performance under the design earthquake: ~Unknown. • No physical basis: Earthquakes don’t produce forces on structures; they generate displacements and impart energy. The forces are the off-spring of displacements, not their cause, and sum up to the structure’s lateral resistance, no matter the earthquake. • Lateral forces don’t bring down the structure; lateral displacements do, acting with the gravity loads (P-Δ).
  • 8. “Equal-displacement rule” 0 Dmax D F If it applies: earthquake induces same peak displacement, no matter the lateral force resistance Applies Does not apply
  • 9. Peak-inelastic-to-peak-elastic-displacement (for various force-deformation laws, from elastoplastic to pinching) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 average(Umax/Sd) period,T (sec) R=2 R=3 R=4 R=5 R=6 R=7 R=8
  • 10. Design checks (“Verification format”): • Force-based design (FBD): Internal force or moment demand < force or moment resistance • Displacement-based design (DBD): Deformation (eg, chord rotation) demand < Cyclic deformation capacity
  • 11. Displacement-based design (DBD) • Concept and procedure: Moehle JP (1992) Displacement-based design of RC structures subjected to earthquakes Earthq. Spectra 8(3): 403-428. • Priestley MJN (1993) Myths and fallacies in earthquake engineering - conflicts between design and reality T. Paulay Symp.: Recent developments in lateral force transfer in buildings La Jolla, CA: – “Direct” DBD: Displacements estimated iteratively with Shibata’s “Substitute Structure”, which has the secant stiffness to the peak response point (a step up in displacement) and the associated damping (a step down). In the end, design is force-based: displacement demands converted to forces for member proportioning. • US approach (FEMA, ASCE): – Displacement demands by “coefficient method”: Elastic estimates times (up to four) coefficients, accounting for special features of the motion or the system.
  • 12. Displacement-Based Assessment in Eurocode 8 (2005) & Displacement-Based Design in Model Code 2010 of fib (Intern. Association Structural Concrete) • Displacement measure: Chord rotations at member ends. • Members proportioned for non-seismic loadings – re-proportioned/ detailed so that their chord-rotation capacities match seismic demands from 5%-damped elastic analysis with secant-to-yield-point stiffness – Fardis MN, Panagiotakos TB (1997) Displacement-based design of RC buildings: Proposed approach and application, in “Seismic Design Methodologies for the Next Generation of Codes” (P Fajfar, H Krawinkler, eds.), Balkema, 195-206. – Panagiotakos TB, Fardis MN (1998) Deformation-controlled seismic design of RC structures, Proc. 11th European Conf. Earthq. Eng. Paris. – Panagiotakos TB, Fardis MN (1999a) Deformation-controlled earthquake resistant design of RC buildings J. Earthq. Eng. 3: 495-518 – Panagiotakos TB, Fardis MN (2001) A displacement-based seismic design procedure of RC buildings and comparison with EC8 Earthq. Eng. Struct. Dyn. 30: 1439-1462. – Bardakis VG, Fardis MN (2011) A displacement-based seismic design procedure for concrete bridges having deck integral with the piers Bull. Earthq. Eng. 9: 537-560
  • 13. Displacement-Based Assessment in Eurocode 8 (2005) & Displacement-Based Design in Model Code 2010 of fib (Intern. Association of Structural Concrete) (cont’d) – Economou SN, Fardis MN, Harisis A (1993) Linear elastic v nonlinear dynamic seismic response analysis of RC buildings EURODYN '93, Trondheim, 63-70 – Panagiotakos TB, Fardis MN (1999) Estimation of inelastic deformation demands in multistory RC buildings Earthq. Eng. Struct. Dyn. 28: 501-528 – Kosmopoulos A, Fardis MN (2007) Estimation of inelastic seismic deformations in asymmetric multistory RC buildings Earthq. Eng. Struct. Dyn. 36: 1209-1234 – Bardakis VG, Fardis MN (2011) Nonlinear dynamic v elastic analysis for seismic deformation demands in concrete bridges having deck integral with the piers. Bull. Earthq. Eng. 9: 519-536 • Member chord-rotation demands from linear-elastic analysis with 5% damping, unmodified by “coefficients” – If applicability conditions not met: nonlinear static (pushover) or dynamic (response history) analysis. θ: rotation with respect to chord connecting two ends at displaced position
  • 14. Elastic stiffness: Controls natural periods of elastic structure and apparent periods of nonlinear response •For seismic design of new buildings: – EI=50% of uncracked section stiffness overestimates by ~2 realistic secant-to-yield-point stiffness; • overestimates force demands (safe-sided in force-based design); • underestimates displacement demands. •For displacement-based design or assessment – EI= Secant stiffness to yield point of end section. EI = MyLs/3y – Effective stiffness of shear span Ls – Ls=M/V (~Lcl/2 in beams/columns, ~Hw/2 in cantilever walls), – My, θy: moment & chord rotation at yielding; – Average EI of two member ends in positive or negative bending.
  • 15. Displacement-Based Assessment in Eurocode 8 (2005) & Displacement-Based Design in Model Code 2010 of fib (Intern. Association of Structural Concrete) (cont’d) • Member chord-rotation capacity (from member geometry & materials)  at yielding (to limit damage & allow immediate re-use);  at “ultimate” conditions, conventionally identified with >20% drop in moment resistance (to prevent serious damage & casualties). – Panagiotakos TB, Fardis MN (2001) Deformations of RC members at yielding and ultimate. ACI Struct. J. 98(2): 135-148. – Biskinis D, Fardis MN (2007) Effect of lap splices on flexural resistance and cyclic deformation capacity of RC members Beton- Stahlbetonbau, Sond. Englisch 102 – Biskinis D, Fardis MN (2010a) Deformations at flexural yielding of members with continuous or lap-spliced bars. Struct. Concr. 11(3): 127-138. – Biskinis D, Fardis MN (2010b) Flexure-controlled ultimate deformations of members with continuous or lap-spliced bars. Struct. Concr. 11(2): 93-108. • Member cyclic shear resistance after flexural yielding. – Biskinis D, Roupakias GK, Fardis MN (2004) Degradation of shear strength of RC members with inelastic cyclic displacements ACI Struct. J. 101(6): 773-783
  • 16. Next generation of codes (and models): Displacement- Based Design, Assessment or Retrofitting in Eurocode 8 (2020) & Model Code 2020 of fib • Member chord-rotation at yielding and at “ultimate” conditions – Grammatikou S, Biskinis D, Fardis MN (2016) Ultimate strain criteria for RC members in monotonic or cyclic flexure ASCE J. Struct. Eng. 142(9) – Grammatikou S, Biskinis D, Fardis MN (2018) Effective stiffness and ultimate deformation of flexure-controlled RC members, including the effects of load cycles, FRP jackets and lap-splicing of longitudinal bars ASCE J. Struct. Eng. (accepted) – Grammatikou S, Biskinis D, Fardis MN (2017) Flexural rotation capacity models fitted to test results using different statistical approaches Struct. Concrete DOI: 10.1002/suco.201600238 (online, Aug. 29, 2017). – Grammatikou S, Biskinis D, Fardis MN (2017c) Models for the flexure-controlled strength, stiffness and cyclic deformation capacity of concrete columns with smooth bars, including lap-splicing and FRP jackets Bull. Earthq. Eng. DOI: 0.1007/s10518-017-0202-y (online, Aug. 4, 2017). • Cyclic shear resistance of walls after flexural yielding. – Grammatikou S, Biskinis D, Fardis MN (2015) Strength, deformation capacity and failure modes of RC walls under cyclic loading Bull. Earthq. Eng. 13: 3277-3300
  • 17. New models, from database of ~4200 tests • Seamless portfolio of physical models for the stiffness and the flexure- controlled cyclic deformation capacity of RC members: – “conforming” to design codes or not, with continuous or lap-spliced deformed bars, with or without fiber-reinforced polymer (FRP) wraps; – “non-conforming”, with continuous or lap-spliced plain bars (with hooked or straight ends), with or without FRP wraps. • Portfolio of empirical models for the flexure-controlled cyclic deformation capacity of the above types of members, but only for sections consisting of one or more rectangular parts. • Models for the cyclic shear resistance as controlled by: – Yielding of transverse reinforcement in a flexural plastic hinge; – Web diagonal compression in walls or short columns; – Yielding of longitudinal & transverse web reinforcement in squat walls – Shear sliding at the base of walls after flexural yielding; • Models for the unloading stiffness and – through it – energy dissipation in cyclic loading.
  • 18. Test-vs-prediction & their ratio, for secant-to-yield-point stiffness 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 EI eff,exp [MNm2] EIeff,pred [MNm2 ] Median: EIeff,exp =0.99EIeff,pred Mean:EIeff,exp =1.08EIeff,pred rectangular non-rectangular 0 1000 2000 3000 0 1000 2000 3000 EI eff,exp [MNm2] EIeff,pred [MNm2 ] Median: EIeff,exp =EIeff,pred Mean:EIeff,exp =1.04EIeff,pred 0 50 100 150 200 250 300 0 50 100 150 200 250 300 EIeff,exp [MNm 2 ] EI eff,pred [MNm 2 ] Median: EIeff,exp =0.985EIeff,pred Mean:EIeff,exp =0.99EIeff,pred 0 20 40 60 80 100 120 0 20 40 60 80 100 120 EIeff,exp [MNm 2 ] EI [MNm 2 ] Median: EIeff,exp =0.91EIeff,pred Mean:EIeff,exp =0.95EIeff,pred 0 100 200 300 400 500 600 0 100 200 300 400 500 600 EI eff,exp [MNm2] EIeff,pred [MNm2 ] Median: EIeff,exp =1.01EIeff,pred Mean:EIeff,exp =1.06EIeff,pred Members with continuous deformed bars (~2700 tests) ~1800 Rect. beam/columns ~300 Circular Columns ~600 Walls, box piers CoV 37% CoV 31% CoV 40% Members with lap-spliced deformed bars (>140 tests) >40 Circ. Columns >100 Rect. beam/columns CoV 21% CoV 24%
  • 19. Test-vs-prediction & their ratio, for secant-to-yield-point stiffness (cont’d) 0 50 100 150 200 250 300 0 50 100 150 200 250 300 EIeff,exp [MNm 2 ] EI eff,pred [MNm 2 ] Median: EIeff,exp =0.985EIeff,pred Mean:EIeff,exp =0.99EIeff,pred 0 20 40 60 80 100 120 0 20 40 60 80 100 120 EIeff,exp [MNm 2 ] EI eff,pred [MNm 2 ] Median: EIeff,exp =0.91EIeff,pred Mean:EIeff,exp =0.95EIeff,pred 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 EIeff,exp [MNm 2 ] EI eff,pred [MNm 2 ] Median: EIeff,,exp =0.99EIeff,pred Mean:EIeff,exp =1.02EIeff,pred non predamaged predamaged 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 EIeff,exp [MNm 2 ] EI eff,pred [MNm 2 ] Mean: EIeff,,exp =1.12EIeff,pred Median:EIeff,exp =1.15EIeff,pred non predamaged predamaged ~160 undamaged rect. columns median=0.99, CoV=29% (22 pre-damaged ones median=0.68, CoV=25%) ~50 undamaged circ. columns median=1.15, CoV=22% (5 pre-damaged ones mean=1.06, CoV=25%) Members with continuous deformed bars & FRP wraps (~240 tests) Members with lap-spliced deformed bars & FRP wraps (~85 tests) ~50 Rect. beam/columns Median=0.98 CoV 23% ~35 Circ. Columns median=0.91 CoV 18%
  • 20. 0 2.5 5 7.5 10 12.5 15 0 2.5 5 7.5 10 12.5 15 EI eff,exp [MN] EIeff,pred [MN] Median: EIeff,exp =0.98EIeff,pred Mean:EIeff,exp =0.97EIeff,pred w ithout FRP s w ith FRP s 0 2.5 5 7.5 10 12.5 15 0 2.5 5 7.5 10 12.5 15 EI eff,exp [MN] EI [MN] Mean: EIeff,exp =EIeff,pred Mean:EIeff,exp =1.04EIeff,pred continuous bars lapped bars 18 cantilevers w/ FRP & cont. bars CoV 26% 10 cantilevers w/ FRPs & hooked laps CoV 16% 20 cantilevers straight laps CoV 46% 4 cantilevers w/ FRP & straight laps: CoV 18% 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 EI eff,exp [MN] EIeff,pred [MN] Median: EIeff,exp =1.08EIeff,pred Median:EIeff,exp =1.20EIeff,pred continuous bars lapped bars 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 EI eff,exp [MN] EIeff,pred [MN] Median: EIeff,exp =0.98EIeff,pred Mean:EIeff,exp =1.01EIeff,pred ~85 cantilevers w/ cont. bars CoV 36% ~30 cantilevers w/ hooked laps CoV 25% 10 doubly fixed w/ cont. bars CoV 29% Test-vs-prediction & their ratio, for secant-to-yield-point stiffness (cont’d) Rect. columns with continuous or lap-spliced plain bars (~125 tests) (~50) FRP-wrapped rect. columns – continuous or lapped plain bars •
  • 21. Test-vs-predicted ultimate chord-rotation & their ratio – physical model 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 u,exp [%]  u,pred [%] Median: u,exp =u,pred Mean:u,exp =1.1u,pred beams & columns rect. w alls non-rect. sections 0 2 4 6 8 0 2 4 6 8 u,exp [%]  u,pred [%] Median: u,exp =u,pred Mean:u,exp =1.01u,pred 0 3 6 9 12 15 0 5 10 15 u,exp [%]  u,pred [%] Median: u,exp =u,pred Mean:u,exp =1.06u,pred 0 1 2 3 4 5 0 1 2 3 4 5 u,exp [%]  u,pred [%] Median:u,exp =u,pred Mean:u,exp =1.08u,pred 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16  u,exp [%]  u,pred [%] Median:u,exp =0.98u,pred Mean:u,exp =1.06u,pred beams & columns rect. walls non-rect. sections ~100 rect. columns CoV=42% ~50 circ. columns CoV=30% Members with continuous deformed bars ~1200 conforming, non-circular CoV 45% ~150 Circ. columns CoV 35% ~50 non-conforming CoV 35% Members with lap-spliced deformed bars yuslip s pl plyu pl u L L L         , 2 1)(  
  • 22. Test-vs-predicted ultimate chord-rotation & their ratio – physical model (cont’d) 0 2 4 6 8 10 0 2 4 6 8 10  u,exp [%]  u,pred [%] Median:u,exp =u,pred Mean:u,exp =0.97u,pred 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16  u,exp [%]  u,pred [%] Median:u,exp =1.01u,pred Mean:u,exp =1.07u,pred 0 4 8 12 16 20 24 0 4 8 12 16 20 24 u,exp [%]  u,pred [%] Median: u,exp =1.01u,pred Mean:u,exp =1.13u,pred 0 4 8 12 16 20 24 0 4 8 12 16 20 24 u,exp [%]  u,pred [%] Median: u,exp =0.99u,pred Mean:u,exp =1.03u,pred 130 rect. Columns CoV=36% Members with continuous deformed bars and FRP wrapping Members with lap-spliced deformed bars and FRP-wrapping ~50 Rect. beam/columns CoV 35% 35 circ. columns CoV 31% ~30 circ. Columns CoV=22%
  • 23. Test-vs-predicted ultimate chord-rotation & their ratio– empirical model 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 u,exp [%]  u,pred [%] Median: u,exp =u,pred Mean:u,exp =1.05u,pred beams & columns rect. w alls non-rect. sections 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16  u,exp [%]  u,pred [%] Median: u,exp =u,pred Mean:u,exp =1.06u,pred beams & columns rect. walls non-rect. sections ~1200 conforming non-circular CoV=38% ~50 non-conforming CoV=30% 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16  u,exp [%]  u,pred [%] Median: u,exp =u,pred Mean:u,exp =1.06u,pred beams & columns rect. walls non-rect. sections ~100 rect. columns CoV=46% 0 4 8 12 16 20 24 0 4 8 12 16 20 24 u,exp [%]  u,pred [%] Median: u,exp =u,pred Mean:u,exp =1.04u,pred 130 FRP-wrapped non-circular CoV=32% 0 2 4 6 8 10 0 2 4 6 8 10  u,exp [%]  u,pred [%] Median:u,exp =0.83u,pred Mean:u,exp =0.9u,pred ~50 FRP-wrapped rect. columns CoV=30% Members with continuous deformed bars Members with lap-spliced deformed bars
  • 24. 0 2 4 6 8 10 12 0 2 4 6 8 10 12 u,exp [%]  u,pred [%] Median: u,exp =u,pred Median:u,exp =1.04u,pred continuous bars lapped bars 0 0.5 1 1.5 2 2.5 3 3.5 4 0 1 2 3 4 u,exp [%]  u,pred [%] Mean: u,exp =0.99u,pred Median:u,exp =0.98u,pred 0 2 4 6 8 10 12 0 2 4 6 8 10 12 u,exp [%]  u,pred [%] Median: u,exp =0.99u,pred Median:u,exp =u,pred continuous bars lapped bars 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 u,exp [%]  u,pred [%] Mean: u,exp =0.93u,pred Median:u,exp =0.98u,pred ~55 cantilevers, cont. bars ← Physical model CoV 46% Empirical model CoV 34%→ ~20 cantilevers, hooked laps ← Physical model CoV 43% Empirical model CoV 45% → 10 doubly fixed columns, cont. bars ← Physical model CoV 14% Empirical model CoV 14%→ Test-vs-predicted ultimate chord-rotation of members with plain bars & their ratio – physical v empirical model
  • 25. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 u,exp [%]  u,pred [%] Mean: u,exp =0.99u,pred Mean:u,exp =u,pred continuous bars lapped bars 0 1 2 3 4 5 0 1 2 3 4 5 u,exp [%]  u,pred [%] Mean: u,exp =1.05u,pred Mean:u,exp =1.03u,pred w ithout FRP s w ith FRP s 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 u,exp [%]  u,pred [%] Mean: u,exp =0.97u,pred Mean:u,exp =1.01u,pred continuous bars lapped bars 0 1 2 3 4 5 0 1 2 3 4 5 u,exp [%]  u,pred [%] Mean: u,exp =0.93u,pred Median:u,exp =1.05u,pred w ithout FRP s w ith FRP s 14 cantilevers, cont. bars,FRPs ← Physical model CoV 45% Empirical model CoV 35%→ 9 cantilevers, hooked laps, FRPs ← Physical model CoV 22% Empirical model CoV 32% → 19 cantilevers, straight laps ← Physical model CoV 45% Empirical model CoV 50%→ 4 cantilevers, straight laps, FRPs ← Physical model CoV 24% Empirical model CoV 22%→ Test-vs-predicted ultimate chord-rotation of members with plain bars & their ratio – physical v empirical model (cont’d)
  • 26. 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 VR,exp(kN) VR,pred (kN) median:VR,exp=1.01VR,pred 0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 VR,exp[kN] VR,pred [kN] rectangular section non-rectangular section median: VR,exp= VR,pred 0 200 400 600 800 1000 0 200 400 600 800 1000 Vexp(kN) Vpred (kN) Rectangular Circular walls & piers “Short” columns (Ls/h ≤ 2) ~ 90 tests, CoV=12% Diagonal compression 7 rect. & 55 non-rect. walls, CoV=14% Diagonal tension failure of plastic hinge ~205 rect. beams/columns, ~75 circ. columns ~40 rect. & ~55 non-rect. walls or box sections, all with 4.1≥Ls/h>1.0, CoV=17% Cyclic shear resistance (after flexural yielding) Test-vs-prediction & their ratio
  • 27. 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 VR,exp[kN] V [kN] rectangular section non-rectangular section median: VR,exp = 1.01 VR,pred 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 VR,exp[kN] V [kN] rectangular section non-rectangular section median: VR,exp = 0.99VR,pred fib MC2010-based, CoV=34% ACI318-based, CoV=32% Eurocode 8-based, CoV=31% 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 VR,exp[kN] V [kN] rectangular section non-rectangular section median: VR,exp =0.98VR,pred 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 VR,exp[kN] VR,pred [kN] rectangular section non-rectangular section median:VR,exp= 1,01VR,pred 0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000 VR,exp[kN] VR,pred [kN] non-rectangular section rectangular section median: VR,exp=1,01VR,pred Physical model, CoV=29% Empirical model, CoV=22% ~95 rect. & ~235 non-rect. “squat” walls (1.2 ≥ Ls/h ) Cyclic shear resistance after flexural yielding (cont’d) ~30 rect. & ~25 non-rect. walls in sliding shear
  • 28. Simulation of 2-directional SPEAR building tests Torsionally imbalanced Greek building of the ‘60s; no engineered earthquake-resistance • eccentric beam-column connections; • plain/hooked bars lap-spliced at floor levels; • (mostly) weak columns, strong beams.3.0 5.0 5.5 5.0 6.0 4.0 1.0 1.70
  • 29. Unretrofitted building: Pseudodynamic tests at PGA 0.15g & 0.2g
  • 30. Fiber-Reinforced Polymer (FRP) retrofitting. Test at PGA 0.2g • Ends of 0.25 m-square columns wrapped in uni-directional Glass FRP over 0.6 m from face of joint. • Full-height wrapping of 0.25x0.75 m column in bi-directional Glass FRP for confinement & shear. • Bi-directional Glass FRP applied on exterior faces of corner joints
  • 31. RC-jacketing of two columns. Tests at PGA 0.2g & 0.3g • FRP wrapping of all columns removed. • RC jacketing of central columns on two adjacent flexible sides from 0.25 m- to 0.4 m-square, w/ eight 16 mm-dia. bars & 10 mm perimeter ties @ 100 mm centres.
  • 32. -0,04 -0,03 -0,02 -0,01 0 0,01 0,02 0,03 0,04 0,05 0,06 Xdisplacement(m) RC jacket retrofitting 0.3g test analysis -0,04 -0,03 -0,02 -0,01 0 0,01 0,02 0,03 0,04 0,05 0,06 Zdisplacement(m) RC jacket retrofitting 0.3g test analysis -0,03 -0,02 -0,01 0 0,01 0,02 0,03 Xdisplacement(m) RC jacket retrofitting 0.2g test analysis -0,03 -0,02 -0,01 0 0,01 0,02 0,03 Zdisplacement(m) RC jacket retrofitting 0.2g test analysis -0,04 -0,035 -0,03 -0,025 -0,02 -0,015 -0,01 -0,005 0 0,005 0,01 0,015 0,02 0,025 0,03Xdisplacement(m) FRP-Retrofitted 0.2g test analysis -0,04 -0,035 -0,03 -0,025 -0,02 -0,015 -0,01 -0,005 0 0,005 0,01 0,015 0,02 0,025 0,03 Zdisplacement(m) FRP-Retrofitted 0.2g test analysis -0,03 -0,025 -0,02 -0,015 -0,01 -0,005 0 0,005 0,01 0,015 0,02 0,025 Xdisplacement(m) 0.2g test analysis -0,03 -0,025 -0,02 -0,015 -0,01 -0,005 0 0,005 0,01 0,015 0,02 0,025 Zdisplacement(m) 0.2g test analysis -0,02 -0,015 -0,01 -0,005 0 0,005 0,01 0,015 0,02 0,00 5,00 10,00 15,00 20,00 Xdisplacement(m) Time (s) 0.15g test analysis -0,02 -0,015 -0,01 -0,005 0 0,005 0,01 0,015 0,02 0,00 5,00 10,00 15,00 20,00 Zdisplacement(m) Time (s) 0.15g test analysis 1st floor displacement histories at Center of Mass
  • 33. -0,125 -0,1 -0,075 -0,05 -0,025 0 0,025 0,05 0,075 0,1 0,125 0,15Xdisplacement(m) RC jacket retrofitting 0.3g test analysis -0,125 -0,1 -0,075 -0,05 -0,025 0 0,025 0,05 0,075 0,1 0,125 0,15 Zdisplacement(m) RC jacket retrofitting 0.3g test analysis -0,1 -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 Xdisplacement(m) RC jacket retrofitting 0.2g test analysis -0,1 -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 Zdisplacement(m) RC jacket retrofitting 0.2g test analysis -0,12 -0,1 -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 Xdisplacement(m) FRP-Retrofitted-0.2g test analysis -0,12 -0,1 -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 Zdisplacement(m) FRP-Retrofitted-0.2g test analysis -0,12 -0,1 -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 0,1 0,12 Xdisplacement(m) 0.2g test analysis -0,12 -0,1 -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 0,1 0,12 Zdisplacement(m) 0.2g test analysis -0,1 -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 0,1 0,00 5,00 10,00 15,00 20,00 Xdisplacement(m) Time (s) 0.15g test analysis -0,1 -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 0,1 0,00 5,00 10,00 15,00 20,00 Zdisplacement(m) Time (s) 0.15g test analysis -0,1 -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 0,1 0,12 Xdisplacement(m) RC jacket retrofitting 0.3g test analysis -0,1 -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 0,1 0,12 Zdisplacement(m) RC jacket retrofitting 0.3g test analysis -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 Xdisplacement(m) RC jacket retrofitting 0.2g test analysis -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 Zdisplacement(m) RC jacket retrofitting 0.2g test analysis -0,1 -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 Xdisplacement(m) FRP-Retrofitted 0.2g test analysis -0,1 -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 Zdisplacement(m) FRP-Retrofitted 0.2g test analysis -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 Xdisplacement(m) 0.2g test analysis -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,08 Zdisplacement(m) 0.2g test analysis -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,00 5,00 10,00 15,00 20,00 Xdisplacement(m) 0.15g test analysis -0,06 -0,04 -0,02 0 0,02 0,04 0,06 0,00 5,00 10,00 15,00 20,00 Zdisplacement(m) 0.15g test analysis 3rd floor 2nd floor
  • 35. FRP-retrofitted columns - 0.2g RC jackets around two outer columns - 0.2g RC jackets around two outer columns - 0.3g Chord-rotation-demand-to- ultimate-chord-rotation-ratio: Retrofitted structure Physical ult. chord rotation model Empirical ult. chord rotation
  • 36. Conclusions of Case Study of SPEAR test building • Estimation of effective stiffness of members with plain bars lap- spliced at floor levels validated by good agreement of predominant periods of computed and recorded displacement waveforms in unretrofitted, FRP-retrofitted or RC-jacketed building. • Extent and location of damage in unretrofitted, FRP-retrofitted or RC- jacketed test building agree better with physical model of ultimate chord rotation than with empirical model.
  • 37. For future: Energy-based seismic design (EBD)? Pros: • Energy balance (or conservation): a law of nature, as solid, familiar to engineers and easy to apply as equilibrium. • Input energy from an earthquake the per unit mass essentially depends only on structure's fundamental period, no matter the viscous damping ratio, the post-yield hardening ratio, the level of inelastic action (ductility factor) and the number of degrees of freedom - the equivalent of the "equal displacement rule". • Forces, displacements: vectors, with components considered separately in design. Response is better captured by a scalar, such as energy. • Energy embodies more damage-related-information than peak displacements (number of cycles, duration). • The evolution of the components of energy during a nonlinear response-history analysis flags numerical instabilities or lack of convergence.
  • 38. The history of EBD • Concept of seismic energy input and its potential first mentioned: – Housner GW (1956) Limit design of structures to resist earthquakes. Proc. 1st World Conf. Earthq. Eng. Berkeley, CA. • Seminal publications drew attention to seismic energy 30 years later: – Zahrah TF, Hall WJ (1984) Earthquake energy absorption in SDOF structures ASCE J. Struct. Eng. 110(8): 1757-1772 – Akiyama H (1988) Earthquake-resistant design based on the energy concept 9th World Conf. Earthq. Eng. Tokyo-Kyoto V: 905-910 – Uang CM, Bertero VV (1990) Evaluation of seismic energy in structures Earthq. Eng. Struct. Dyn. 19: 77-90 • EBD considered, along with DBD, as the promising approach(es) for Performance-based Seismic Design, in: – SEAOC (1995) Performance Based Seismic Engineering of Buildings VISION 2000 Committee, Sacramento, CA • Boom of publications for ~20 to 25 years. Then effort run out of steam and research output reduced to a trickle. No impact on codes. • EBD was overtaken and sidelined by (its junior by 35 years) DBD.
  • 39. EBD: State-of-the-Art and challenges • The State-of-the-Art is quite advanced and has reached a satisfactory level, only concerning the seismic energy input: – Shape and dependence of seismic energy input spectra on parameters are fully understood and described. – Attenuation equations of seismic energy input with distance from the source have also been established. • The distribution of the energy input within the structure (height- and plan-wise) and its breakdown into types of energy (kinetic, stored as deformation energy – recoverable or not – and dissipated in viscous and hysteretic ways) has been studied, but certain hurdles remain: – Global Rayleigh-type viscous damping produces fictitious forces and misleading predictions of the inelastic response. Replace with elemental damping, preferably of the hysteretic type alone? – Potential energy of weights supported on rocking vertical elements: important – yet presently ignored - component of energy balance. • The energy capacity side is the most challenging aspect, but remains a terra incognita, as it has not been addressed at all yet.
  • 40. EBD: needs, potential and prospects • Major achievements of the past concerning the seismic input energy and the progress so far regarding other aspects of the demand side, will all be wasted, and an opportunity for a new road to performance- based earthquake engineering will be missed, unless: – A concerted effort is undertaken on the analysis side to resolve the issue of modeling energy dissipation and to find an easy way to account for the variation in the potential energy of weights supported on large rocking elements, such as concrete walls of significant length (a geometrically nonlinear problem). – The capacity of various types of elements to dissipate energy by hysteresis and to safely store deformation energy is quantified in terms of their geometric features and material properties. – Energy-based design procedures are devised and applied on a pilot basis, leading to a new, energy-based conceptual design thinking. • The (distant) goal (of the ‘30s, rather than of the ‘20s) should be the infiltration of codes of practice and seismic design standards. The most promising region for it is Europe, as its academics exert larger influence on code-drafting than in other parts of the world.